Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics

被引:115
作者
Avesani, M. [1 ]
Calderaro, L. [1 ]
Schiavon, M. [1 ,6 ]
Stanco, A. [1 ]
Agnesi, C. [1 ]
Santamato, A. [1 ,4 ]
Zahidy, M. [1 ]
Scriminich, A. [1 ]
Foletto, G. [1 ]
Contestabile, G. [2 ]
Chiesa, M. [3 ]
Rotta, D. [3 ]
Artiglia, M. [4 ]
Montanaro, A. [4 ]
Romagnoli, M. [4 ]
Sorianello, V [4 ]
Vedovato, F. [1 ]
Vallone, G. [1 ,5 ]
Villoresi, P. [1 ]
机构
[1] Univ Padua, Dipartimento Ingn Informaz, Via Gradenigo 6-B, I-35131 Padua, Italy
[2] Ist TeCIP Scuola Super St Anna, Pisa, Italy
[3] Integrated Photon Technol Fdn, InPhoTec, Pisa, Italy
[4] PNTLab Consorzio Nazl Interuniv Telecomunicaz, Pisa, Italy
[5] Univ Padua, Dipartimento Fis & Astron, Padua, Italy
[6] Sorbonne Univ, LIP6, CNRS, Paris, France
关键词
FIBER-COUPLING EFFICIENCY; DISTRIBUTION-SYSTEM; SECURITY;
D O I
10.1038/s41534-021-00421-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The future envisaged global-scale quantum-communication network will comprise various nodes interconnected via optical fibers or free-space channels, depending on the link distance. The free-space segment of such a network should guarantee certain key requirements, such as daytime operation and the compatibility with the complementary telecom-based fiber infrastructure. In addition, space-to-ground links will require the capability of designing light and compact quantum devices to be placed in orbit. For these reasons, investigating available solutions matching all the above requirements is still necessary. Here we present a full prototype for daylight quantum key distribution at 1550 nm exploiting an integrated silicon-photonics chip as state encoder. We tested our prototype in the urban area of Padua (Italy) over a 145 m-long free-space link, obtaining a quantum bit error rate around 0.5% and an averaged secret key rate of 30 kbps during a whole sunny day (from 11:00 to 20:00). The developed chip represents a cost-effective solution for portable free-space transmitters and a promising resource to design quantum optical payloads for future satellite missions.
引用
收藏
页数:8
相关论文
共 61 条
[21]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[22]   Free-space quantum key distribution in urban daylight with the SPGD algorithm control of a deformable mirror [J].
Gong, Yun-Hong ;
Yang, Kui-Xing ;
Yong, Hai-Lin ;
Guan, Jian-Yu ;
Shentu, Guo-Liang ;
Liu, Chang ;
Li, Feng-Zhi ;
Cao, Yuan ;
Yin, Juan ;
Liao, Sheng-Kai ;
Ren, Ji-Gang ;
Zhang, Qiang ;
Peng, Cheng-Zhi ;
Pan, Jian-Wei .
OPTICS EXPRESS, 2018, 26 (15) :18897-18905
[23]   Practical free-space quantum key distribution over 10 km in daylight and at night [J].
Hughes, RJ ;
Nordholt, JE ;
Derkacs, D ;
Peterson, CG .
NEW JOURNAL OF PHYSICS, 2002, 4 :43.1-43.14
[24]   Provably secure and high-rate quantum key distribution with time-bin qudits [J].
Islam, Nurul T. ;
Lim, Charles Ci Wen ;
Cahall, Clinton ;
Kim, Jungsang ;
Gauthier, Daniel J. .
SCIENCE ADVANCES, 2017, 3 (11)
[25]  
Khan I, 2018, OPT PHOTONICS NEWS, V29, P26, DOI 10.1364/OPN.29.2.000026
[26]   The quantum internet [J].
Kimble, H. J. .
NATURE, 2008, 453 (7198) :1023-1030
[27]   Experimental filtering effect on the daylight operation of a free-space quantum key distribution [J].
Ko, Heasin ;
Kim, Kap-Joong ;
Choe, Joong-Seon ;
Choi, Byung-Seok ;
Kim, Jong-Hoi ;
Baek, Yongsoon ;
Youn, Chun Ju .
SCIENTIFIC REPORTS, 2018, 8
[28]  
Kómár P, 2014, NAT PHYS, V10, P582, DOI [10.1038/nphys3000, 10.1038/NPHYS3000]
[29]  
Krainak M, 2019, SPIE, V10899
[30]   Quantum hacking on a free-space quantum key distribution system without measuring quantum signals [J].
Lee, Min Soo ;
Woo, Min Ki ;
Kim, Yong-Su ;
Cho, Young-Wook ;
Han, Sang-Wook ;
Moon, Sung .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (03) :B77-B82