Study of Point Spread in the Aberration-Corrected Transmission Electron Microscopy

被引:5
|
作者
Ge, Binghui [1 ]
Wang, Yumei [1 ]
Chang, Yunjie [1 ]
Yao, Yuan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
point spread; peak width; aberration-corrected transmission electron microscopy; quantitative electron microscopy; negative C-s imaging; positive C-s imaging; RESOLUTION; SCATTERING; OXYGEN;
D O I
10.1017/S1431927614012823
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High precision determination of atomic position is necessary for quantitative electron microscopy so that small width of peaks, which represent atoms in structural images, adequate resolution, and sufficiently strong image contrast are needed. The width of peak is usually determined by the point spread (PS) of instruments, but the PS of objects should also be taken into consideration in aberration-corrected transmission electron microscopy when point resolution of a microscope reaches the sub-angstrom scale, and thus the PS of the instrument is comparable with that of the object. In this article, PS is investigated by studying peak width with variation of atomic number, sample thickness, and spherical aberration coefficients in both negative C-s (NCSI) and positive C-s imaging (PCSI) modes by means of dynamical image simulation. Through comparing the peak width with various atomic number, thickness, and values of spherical aberration, NCSI mode is found to be superior to PCSI considering the smaller width.
引用
收藏
页码:1447 / 1452
页数:6
相关论文
共 50 条
  • [1] The Three-Dimensional Point Spread Function of Aberration-Corrected Scanning Transmission Electron Microscopy
    Lupini, Andrew R.
    de Jonge, Niels
    MICROSCOPY AND MICROANALYSIS, 2011, 17 (05) : 817 - 826
  • [2] Environmental Transmission Electron Microscopy in an Aberration-Corrected Environment
    Hansen, Thomas W.
    Wagner, Jakob B.
    MICROSCOPY AND MICROANALYSIS, 2012, 18 (04) : 684 - 690
  • [3] Development of a monochromator for aberration-corrected scanning transmission electron microscopy
    Mukai, Masaki
    Okunishi, Eiji
    Ashino, Masanori
    Omoto, Kazuya
    Fukuda, Tomohisa
    Ikeda, Akihiro
    Somehara, Kazunori
    Kaneyama, Toshikatsu
    Saitoh, Tomohiro
    Hirayama, Tsukasa
    Ikuhara, Yuichi
    MICROSCOPY, 2015, 64 (03) : 151 - 158
  • [4] New views of materials through aberration-corrected scanning transmission electron microscopy
    Pennycook, S. J.
    Varela, M.
    JOURNAL OF ELECTRON MICROSCOPY, 2011, 60 : S213 - S223
  • [5] Surface Channeling in Aberration-Corrected Scanning Transmission Electron Microscopy of Nanostructures
    Liu, Jingyue
    Allard, Lawrence F.
    MICROSCOPY AND MICROANALYSIS, 2010, 16 (04) : 425 - 433
  • [6] Aberration-Corrected Transmission Electron Microscopy of the Intergranular Phase in Magnetic Recording Media
    Hossein-Babaei, Faraz
    Koh, Ai Leen
    Srinivasan, Kumar
    Bertero, Gerardo A.
    Sinclair, Robert
    NANO LETTERS, 2012, 12 (05) : 2595 - 2598
  • [7] Direct Imaging of Light Elements in Aberration-Corrected Scanning Transmission Electron Microscopy
    Idrobo, J. C.
    Oxley, M. P.
    Walkosz, W.
    Klie, R. F.
    Oeguet, S.
    Mikijelj, B.
    Pennycook, S. J.
    Pantelides, S. T.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 1480 - 1481
  • [8] Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy
    Krumeich, F.
    Mueller, E.
    Wepf, R. A.
    MICRON, 2013, 49 : 1 - 14
  • [9] Atomic-scale study of nanocatalysts by aberration-corrected electron microscopy
    Zhang, Xun
    Zhang, Xiuli
    Yuan, Biao
    Liang, Chao
    Yu, Yi
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (41)
  • [10] Aberration-corrected Electron Microscopy Imaging for Nanoelectronics Applications
    Kisielowski, C.
    Specht, P.
    Alloyeau, D.
    Erni, R.
    Ramasse, Q.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2009, 2009, 1173 : 231 - +