On Maximal Sum-Free Sets in Abelian Groups

被引:0
作者
Hassler, Nathanael [1 ]
Treglown, Andrew [2 ]
机构
[1] Ecole Normale Super ENS Rennes, Rennes, France
[2] Univ Birmingham, Birmingham, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
NUMBER;
D O I
10.37236/10632
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Balogh, Liu, Sharifzadeh and Treglown [Journal of the European Mathematical Society, 2018] recently gave a sharp count on the number of maximal sum-free subsets of {1, ..., n}, thereby answering a question of Cameron and Erdos. In contrast, not as much is known about the analogous problem for finite abelian groups. In this paper we give the first sharp results in this direction, determining asymptotically the number of maximal sum-free sets in both the binary and ternary spaces Z(2)(k) and Z(3)(k). We also make progress on a conjecture of Balogh, Liu, Sharifzadeh and Treglown concerning a general lower bound on the number of maximal sum-free sets in abelian groups of a fixed order. Indeed, we verify the conjecture for all finite abelian groups with a cyclic component of size at least 3084. Other related results and open problems are also presented.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 19 条
[1]   Counting sum-free sets in abelian groups [J].
Alon, Noga ;
Balogh, Jozsef ;
Morris, Robert ;
Samotij, Wojciech .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (01) :309-344
[2]   Sharp bound on the number of maximal sum-free subsets of integers [J].
Balogh, Jozsef ;
Liu, Hong ;
Sharifzadeh, Maryam ;
Treglown, Andrew .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (08) :1885-1911
[3]   THE NUMBER OF MAXIMAL SUM-FREE SUBSETS OF INTEGERS [J].
Balogh, Jozsef ;
Liu, Hong ;
Sharifzadeh, Maryam ;
Treglown, Andrew .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (11) :4713-4721
[4]   Notes on sum-free and related sets [J].
Cameron, PJ ;
Erdos, P .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :95-107
[5]  
CAMERON PJ, 1990, NUMBER THEORY /, P61
[6]  
CLARK WE, 1992, J COMB THEORY A, V61, P222
[7]  
Davydov A. A., 1989, Problems of Information Transmission, V25, P265
[8]   On sizes of complete caps in projective spaces PG(n, q) and arcs in planes PG(2, q) [J].
Davydov A.A. ;
Faina G. ;
Marcugini S. ;
Pambianco F. .
Journal of Geometry, 2009, 94 (1-2) :31-58
[9]   MAXIMAL SUM-FREE SETS OF ELEMENTS OF FINITE GROUPS [J].
DIANANDA, PH ;
YAP, HP .
PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (01) :1-&
[10]   Sum-free sets in abelian groups [J].
Green, B .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 147 (1) :157-188