Eigenparameter dependent discrete Dirac equations with spectral singularities

被引:16
作者
Bairamov, Elgiz [1 ]
Koprubasi, Turhan [1 ]
机构
[1] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
关键词
Discrete Dirac equations; Spectral analysis; Discrete spectrum; Spectral singularities; DIFFERENCE-EQUATIONS;
D O I
10.1016/j.amc.2009.12.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let us consider the Boundary Value Problem (BVP) for the discrete Dirac Equations {a(n+1)y(n+1)((2)) + b(n)y(n)((2)) + p(n)y(n)((1)) = lambda y(n)((1)) a(n-1)y(n-1)((1)) + b(n)y(n)((1)) + q(n)y(n)((2)) = lambda y(n)((2)), n is an element of N, (gamma(0) + gamma(1)lambda)y(1)((2)) + (beta(0) + beta(1)lambda)y(0)((1)) = 0, where (a(n)), (b(n)), (p(n)) and (q(n)), n is an element of N are complex sequences, gamma(i), beta(i) is an element of C, i = 0, 1 and lambda is a eigenparameter. Discussing the eigenvalues and the spectral singularities, we prove that the BVP (0.1), (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, if Sigma(infinity)(n=1) exp(epsilon n(delta))(vertical bar 1-a(n)vertical bar + vertical bar 1 + b(n)vertical bar + vertical bar p(n)vertical bar + vertical bar q(n)vertical bar) < infinity, holds, for some epsilon > 0 and 1/2 <= delta <= 1. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:4216 / 4220
页数:5
相关论文
共 17 条
[1]   Spectral analysis of q-difference equations with spectral singularities [J].
Adivar, M ;
Bohner, M .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (7-8) :695-703
[2]   Difference equations of second order with spectral singularities [J].
Adivar, M ;
Bairamov, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (02) :714-721
[3]   Spectral properties of non-selfadjoint difference operators [J].
Adivar, M ;
Bairamov, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 261 (02) :461-478
[4]  
Adivar M, 2006, INDIAN J MATH, V48, P17
[5]  
Agarwal R.P., 1997, Advanced Topics in Difference Equations
[6]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[7]  
Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
[8]  
Agarwal RP, 2000, Difference equation and inequalities
[9]  
[Anonymous], 2001, INTRO APPL
[10]  
[Anonymous], 1981, THEORY NONLINEAR LAT