Model selection in nonparametric hazard regression

被引:20
作者
Leng, Chenlei [1 ]
Zhang, Hao Helen
机构
[1] Natl Univ Singapore, Dept Stat & Probabil, SG-117546 Singapore, Singapore
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
COSSO; Cox proportional hazard model; model selection; penalized likelihood;
D O I
10.1080/10485250601027042
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a novel model selection method for a nonparametric extension of the Cox proportional hazard model, in the framework of smoothing splines ANOVA models. The method automates the model building and model selection processes simultaneously by penalizing the reproducing kernel Hilbert space norms. On the basis of a reformulation of the penalized partial likelihood, we propose an efficient algorithm to compute the estimate. The solution demonstrates great flexibility and easy interpretability in modeling relative risk functions for censored data. Adaptive choice of the smoothing parameter is discussed. Both simulations and a real example suggest that our proposal is a useful tool for multivariate function estimation and model selection in survival analysis.
引用
收藏
页码:417 / 429
页数:13
相关论文
共 24 条
[1]  
[Anonymous], J R STAT SOC
[2]  
[Anonymous], SMOOTHING SPLINE ANO
[3]  
[Anonymous], MODELING SURVIVAL DA
[4]  
[Anonymous], 1990, SPLINE MODELS OBSERV
[5]   COVARIANCE ANALYSIS OF CENSORED SURVIVAL DATA [J].
BRESLOW, N .
BIOMETRICS, 1974, 30 (01) :89-99
[6]   Local partial-likelihood estimation for lifetime data [J].
Fan, Jianqing ;
Lin, Huazhen ;
Zhou, Yong .
ANNALS OF STATISTICS, 2006, 34 (01) :290-325
[7]  
Fan JQ, 2002, ANN STAT, V30, P74
[8]  
Fleming T.R., 1991, COUNTING PROCESSES S, DOI 10.1002/9781118150672
[9]   FLEXIBLE METHODS FOR ANALYZING SURVIVAL-DATA USING SPLINES, WITH APPLICATIONS TO BREAST-CANCER PROGNOSIS [J].
GRAY, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (420) :942-951
[10]  
Gu C, 1996, STAT SINICA, V6, P861