Estimating the covariance matrix of the coefficient estimator in multivariate partial least squares regression with chemical applications

被引:5
作者
Martinez, Jose L. [1 ]
Leiva, Victor [2 ]
Saulo, Helton [3 ]
Liu, Shuangzhe [4 ]
机构
[1] Univ Sinu, Dept Basic Sci, Monteria, Colombia
[2] Pontificia Univ Catolica Valparaiso, Sch Ind Engn, Valparaiso, Chile
[3] Univ Brasilia, Dept Stat, Brasilia, DF, Brazil
[4] Univ Canberra, Fac Sci & Technol, Canberra, ACT, Australia
关键词
Covariance matrix; Jackknife method; Monte Carlo method; PLS regression; R software; Standard error; PREDICTION INTERVALS; MODEL; PLS;
D O I
10.1016/j.chemolab.2021.104328
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The partial least squares (PLS) regression is a statistical learning technique that solves collinearity and/or highdimensionality in the space of covariates. In this paper, we propose a new estimator for the covariance matrix of the estimator of the regression coefficients in the multivariate PLS model. This new estimator is simple to be calculated and with a low computational cost. We conduct a Monte Carlo simulation study to assess the performance of the proposed estimator. Then, we apply our proposal to analyze a multivariate real chemical data set. These numerical results show the excellent performance of our proposal.
引用
收藏
页数:8
相关论文
共 34 条
[1]  
[Anonymous], 1975, Perspectives in probability and statistics
[2]   PLS generalised linear regression [J].
Bastien, P ;
Vinzi, VE ;
Tenenhaus, M .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (01) :17-46
[3]   Partial least squares: a versatile tool for the analysis of high-dimensional genomic data [J].
Boulesteix, Anne-Laure ;
Strimmer, Korbinian .
BRIEFINGS IN BIOINFORMATICS, 2007, 8 (01) :32-44
[4]  
Burnham AJ, 1999, J CHEMOMETR, V13, P49, DOI 10.1002/(SICI)1099-128X(199901/02)13:1<49::AID-CEM531>3.0.CO
[5]  
2-K
[6]   An errors-in-variables model based on the Birnbaum-Saunders distribution and its diagnostics with an application to earthquake data [J].
Carrasco, Jalmar M. F. ;
Figueroa-Zuniga, Jorge I. ;
Leiva, Victor ;
Riquelme, Marco ;
Aykroyd, Robert G. .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (02) :369-380
[7]   SIMPLS - AN ALTERNATIVE APPROACH TO PARTIAL LEAST-SQUARES REGRESSION [J].
DEJONG, S .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1993, 18 (03) :251-263
[8]   Cokriging Prediction Using as Secondary Variable a Functional Random Field with Application in Environmental Pollution [J].
Giraldo, Ramon ;
Herrera, Luis ;
Leiva, Victor .
MATHEMATICS, 2020, 8 (08)
[9]  
Hair Jr J.F., 2014, MULTIVARIATE DATA AN, V7th
[10]   ON THE STRUCTURE OF PARTIAL LEAST-SQUARES REGRESSION [J].
HELLAND, IS .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1988, 17 (02) :581-607