Explorations of the extended ncKP hierarchy

被引:21
作者
Dimakis, A
Müller-Hoissen, F
机构
[1] Univ Aegean, Dept Financial Management Engn, GR-82100 Chios, Greece
[2] Max Planck Inst Stromungsforsch, D-37073 Gottingen, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 45期
关键词
D O I
10.1088/0305-4470/37/45/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A recently obtained extension (xncKP) of the Moyal-deformed KP hierarchy (ncKP hierarchy) by a set of evolution equations in the Moyal-deformation parameters is further explored. Formulae are derived to compute these equations efficiently. Reductions of the xncKP hierarchy are treated, in particular to the extended ncKdV and ncBoussinesq hierarchies. Furthermore, a good part of the Sato formalism for the KP hierarchy is carried over to the generalized framework. In particular, the well-known bilinear identity theorem for the KP hierarchy, expressed in terms of the (formal) Baker-Akhiezer function, extends to the xncKP hierarchy. Moreover, it is demonstrated that N-soliton solutions of the ncKP equation are also solutions of the first few deformation equations. This is shown to be related to the existence of certain families of algebraic identities.
引用
收藏
页码:10899 / 10930
页数:32
相关论文
共 38 条
[1]  
ARATYN H, 1995, HEPTH9503211
[2]  
Arbarello E., 2002, CONTEMP MATH, V312, P9
[3]  
Avramidi I, 2000, MATH NACHR, V219, P45
[4]  
Babelon O, 2003, INTRO CLASSICAL INTE
[5]   CONSTRAINT OF INTEGRABLE SYSTEMS - FROM HIGHER TO LOWER DIMENSIONS [J].
CHENG, Y .
PHYSICS LETTERS A, 1992, 166 (3-4) :217-223
[6]  
Date E., 1983, Non-Linear Integrable Systems - Classical Theory and Quantum Theory. Proceedings of RIMS Symposium, P39
[7]  
DICKEY LA, 2003, SOLITON EQUATIONS HA
[8]   Extension of noncommutative soliton hierarchies [J].
Dimakis, A ;
Müller-Hoissen, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (13) :4069-4084
[9]   The Korteweg-de-Vries equation on a noncommutative space-time [J].
Dimakis, A ;
Müller-Hoissen, F .
PHYSICS LETTERS A, 2000, 278 (03) :139-145
[10]   HAMILTONIAN THEORY OVER NONCOMMUTATIVE RINGS AND INTEGRABILITY IN MULTIDIMENSIONS [J].
DORFMAN, IY ;
FOKAS, AS .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) :2504-2514