Dynamics of immature mAb glycoform secretion during CHO cell culture: An integrated modelling framework

被引:48
作者
del Val, Ioscani Jimenez [1 ]
Fan, Yuzhou [2 ,3 ]
Weilguny, Dietmar [3 ]
机构
[1] Natl Univ Ireland Univ Coll Dublin, Sch Chem & Bioproc Engn, Dublin 4, Ireland
[2] Tech Univ Denmark, Network Engn Eukaryot Cell Factories, Dept Syst Biol, DK-2800 Lyngby, Denmark
[3] Symphogen AS, Ballerup, Denmark
关键词
CHO cells; Dynamic glycosylation model; In silico glycoengineering; Pharmaceutical bioprocessing; Therapeutic protein glycosylation; HAMSTER OVARY CELLS; N-ACETYLGLUCOSAMINYLTRANSFERASE-I; MATHEMATICAL-MODEL; RECOMBINANT PROTEINS; IMMUNOGLOBULIN-G; SERUM CLEARANCE; GLYCOSYLATION; PRODUCTIVITY; TEMPERATURE; ANTIBODIES;
D O I
10.1002/biot.201400663
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Ensuring consistent glycosylation-associated quality of therapeutic monoclonal antibodies (mAbs) has become a priority in pharmaceutical bioprocessing given that the distribution and composition of the carbohydrates (glycans) bound to these molecules determines their therapeutic efficacy and immunogenicity. However, the interaction between bioprocess conditions, cellular metabolism and the intracellular process of glycosylation remains to be fully understood. To gain further insight into these interactions, we present a novel integrated modelling platform that links dynamic variations in mAb glycosylation with cellular secretory capacity. Two alternative mechanistic representations of how mAb specific productivity (qp) influences glycosylation are compared. In the first, mAb glycosylation is modulated by the linear velocity with which secretory cargo traverses the Golgi apparatus. In the second, glycosylation is influenced by variations in Golgi volume. Within our modelling framework, both mechanisms accurately reproduce experimentally-observed dynamic changes in mAb glycosylation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:610 / 623
页数:14
相关论文
共 55 条
[1]   Effect of Culture Temperature on Erythropoietin Production and Glycosylation in a Perfusion Culture of Recombinant CHO Cells [J].
Ahn, Woo Suk ;
Jeon, Jae-Jin ;
Jeong, Yeong-Ran ;
Lee, Seung Joo ;
Yoon, Sung Kwan .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 101 (06) :1234-1244
[2]   Increased serum clearance of oligomannose species present on a human IgG1 molecule [J].
Alessandri, Leslie ;
Ouellette, David ;
Acquah, Aima ;
Rieser, Mathew ;
LeBlond, David ;
Saltarelli, Mary ;
Radziejewski, Czeslaw ;
Fujimori, Taro ;
Correia, Ivan .
MABS, 2012, 4 (04) :509-520
[3]  
[Anonymous], 1997, GPROMS MODELBUILDER
[4]  
BENDIAK B, 1987, J BIOL CHEM, V262, P5784
[5]   AMMONIA AFFECTS THE GLYCOSYLATION PATTERNS OF RECOMBINANT MOUSE PLACENTAL LACTOGEN-1 BY CHINESE-HAMSTER OVARY CELLS IN A PH-DEPENDENT MANNER [J].
BORYS, MC ;
LINZER, DIH ;
PAPOUTSAKIS, ET .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 43 (06) :505-514
[6]   Organization of the ER-Golgi interface for membrane traffic control [J].
Brandizzi, Federica ;
Barlowe, Charles .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2013, 14 (06) :382-392
[7]   Independent Lec1A CHO glycosylation mutants arise from point mutations in N-acetylglucosaminyltransferase I that reduce affinity for both substrates.: Molecular consequences based on the crystal structure of GlcNAc-TI [J].
Chen, W ;
Ünligil, UM ;
Rini, JM ;
Stanley, P .
BIOCHEMISTRY, 2001, 40 (30) :8765-8772
[8]   Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose [J].
Chung, Christine H. ;
Mirakhur, Beloo ;
Chan, Emily ;
Le, Quynh-Thu ;
Berlin, Jordan ;
Morse, Michael ;
Murphy, Barbara A. ;
Satinover, Shama M. ;
Hosen, Jacob ;
Mauro, David ;
Slebos, Robbert J. ;
Zhou, Qinwei ;
Gold, Diane ;
Hatley, Tina ;
Hicklin, Daniel J. ;
Platts-Mills, Thomas A. E. .
NEW ENGLAND JOURNAL OF MEDICINE, 2008, 358 (11) :1109-1117
[9]  
del Val IJ, 2012, GLYCOSYLATION, P353, DOI 10.5772/50261
[10]   A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus [J].
del Val, Ioscani Jimenez ;
Nagy, Judit M. ;
Kontoravdi, Cleo .
BIOTECHNOLOGY PROGRESS, 2011, 27 (06) :1730-1743