Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions

被引:49
作者
Li, Yan [1 ]
Li, Yuxiang [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 21189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Attraction-repulsion chemotaxis; system; Blowup; Nonradially solutions; AGGREGATION; BOUNDEDNESS; EXISTENCE;
D O I
10.1016/j.nonrwa.2015.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the attraction repulsion chemotaxis system [GRAPHICS] , under homogeneous Neumann boundary conditions in a smooth bounded domain in R-2. We study the finite-time blowup of nonradial solutions in the parameter values X alpha - xi gamma > 0 and beta not equal delta. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:170 / 183
页数:14
相关论文
共 23 条
[1]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[2]  
[Anonymous], 2001, ELLIPTIC PARTIAL DIF
[3]  
Biler P., 1999, ADV MATH SCI APPL, V9, P347
[4]   Global existence and blow-up for a system describing the aggregation of microglia [J].
Espejo, Elio ;
Suzuki, Takashi .
APPLIED MATHEMATICS LETTERS, 2014, 35 :29-34
[5]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[6]   Boundedness vs. blow-up in a chemotaxis system [J].
Horstmann, D ;
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :52-107
[7]  
Horstmann D., 2003, Jahresber. Dtsch. Math.-Ver., V105, P103
[9]  
It^o S, 1992, DIFFUSION EQUATIONS, V114
[10]   ON EXPLOSIONS OF SOLUTIONS TO A SYSTEM OF PARTIAL-DIFFERENTIAL EQUATIONS MODELING CHEMOTAXIS [J].
JAGER, W ;
LUCKHAUS, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) :819-824