Well-posedness of higher-order nonlinear Schrodinger equations in Sobolev spaces Hs (Rn) and applications

被引:37
作者
Cui, Shangbin [1 ]
Guo, Cuihua [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Shanxi Univ, Dept Math, Taiyuan 030006, Shanxi, Peoples R China
基金
美国国家科学基金会;
关键词
dispersive equation; Cauchy problem; well-posedness;
D O I
10.1016/j.na.2006.06.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish local well-posedness in the Sobolev space H-s (R-n) with s > s(0) for a general class of nonlinear dispersive equations of the type partial derivative(t)u - iP(D-x)u = F(u), where P(D-x) is an elliptic differential operator on R-n with a real symbol, F(u) is a nonlinear function which behaves like \u\(sigma) u for some constant sigma > 0, and s(0) is a critical index suggested by a standard scaling argument. By using such local result and conservation laws, we improve the known and obtain some new global well-posedness results for the fourth-order nonlinear Schrodinger equation i partial derivative(t)u + a Delta u + b Delta(2) u = c\u\(sigma) u. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:687 / 707
页数:21
相关论文
共 15 条
[1]  
[Anonymous], TEOR MAT FIZ
[2]  
Bourgain J., 1999, GLOBAL SOLUTIONS NON
[3]  
Cazenave T., 2003, COURANT LECT NOTES M
[4]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[5]  
CUI S, UNPUB POINTWISE ESTI, V2
[6]   Pointwise estimates for a class of oscillatory integrals and related Lp-Lq estimates [J].
Cui, SB .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (04) :441-457
[7]   Self-focusing with fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1437-1462
[8]  
GUO C, IN PRESS J MATH ANAL
[9]  
IVANOV BA, 1983, FIZ NIZK TEMP+, V9, P845
[10]   Stability of solitons described by nonlinear Schrodinger-type equations with higher-order dispersion [J].
Karpman, VI ;
Shagalov, AG .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 144 (1-2) :194-210