CdSe/ZnCdSe Quantum Dot Heterostructures for Yellow Spectral Range Grown on GaAs Substrates by Molecular Beam Epitaxy

被引:5
作者
Gronin, S. V. [1 ]
Sorokin, S. V. [1 ]
Kazanov, D. R. [1 ,2 ]
Sedova, I. V. [1 ]
Klimko, G. V. [1 ]
Evropeytsev, E. A. [1 ]
Ivanov, S. V. [1 ]
机构
[1] RAS, Ioffe Phys Tech Inst, St Petersburg, Russia
[2] St Petersburg State Polytech Univ, St Petersburg, Russia
关键词
TRANSMISSION ELECTRON-MICROSCOPY; LASER; REGION;
D O I
10.12693/APhysPolA.126.1096
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper reports on theoretical calculations and fabrication by molecular beam epitaxy of wide-gap ITVI heterostructures emitting in the 'true" yellow range (560-600 nm) at room temperature. The active region of the structures comprises CdSe quantum dot active layer embedded into a strained Zn1-xCdxSe (x = 0.2-0.5) quantum well surrounded by a Zn(S,Se)/ZnSe superlattice. Calculations of the CdSe/(Zn,Cd)Se/Zn(S,Se) quantum dot quantum well luminescence wavelength performed using the envelope-function approximation predict rather narrow range of the total Zn1-xCdxSe quantum well thicknesses (d approximate to 2-4 nm) reducing efficiently the emission wavelength, while the variation of x (0.2-0.5) has much stronger effect. The calculations are in a reasonable agreement with the experimental data obtained on a series of test heterostructures. The maximum experimentally achieved emission wavelength at 300 K is as high as 600 nm, while the intense room temperature photoluminescence has been observed up to lambda = 590 nm only. To keep the structure pseudomorphic to GaAs as a whole the tensile-strained surrounding ZnS0.17Se0.83/ZnSe superlattice were introduced to compensate the compressive stress induced by the Zn1-xCdxSe quantum well. The graded-index waveguide laser heterostructure with a CdSe/Zn0.65Cd0.35Se/Zn(S,Se) quantum dot-quantum well active region emitting at lambda = 576 nm (T = 300 K) with the 77 to 300 K intensity ratio of 2.5 has been demonstrated.
引用
收藏
页码:1096 / 1099
页数:4
相关论文
共 15 条
[1]  
Adachi S., 2004, HDB PHYS PROPERTIES, V3
[2]   Monitoring of ZnCdSe layer properties by in situ x-ray diffraction during heteroepitaxy on (001)GaAs substrates [J].
Benkert, A. ;
Schumacher, C. ;
Brunner, K. ;
Neder, R. B. .
APPLIED PHYSICS LETTERS, 2007, 90 (16)
[3]   CRITICAL THICKNESS IN HETEROEPITAXIAL GROWTH OF ZINCBLENDE SEMICONDUCTOR COMPOUNDS [J].
COHENSOLAL, G ;
BAILLY, F ;
BARBE, M .
JOURNAL OF CRYSTAL GROWTH, 1994, 138 (1-4) :68-74
[4]   Structural and optical optimization of ZnSe-based laser heterostructures with graded index waveguide [J].
Gronin, S. V. ;
Sedova, I. V. ;
Sorokin, S. V. ;
Klimko, G. V. ;
Belyaev, K. G. ;
Lebedev, A. V. ;
Sitnikova, A. A. ;
Toropov, A. A. ;
Ivanov, S. V. .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 8-9, 2012, 9 (8-9) :1833-1836
[5]   CdSe fractional-monolayer active region of molecular beam epitaxy grown green ZnSe-based lasers [J].
Ivanov, SV ;
Toropov, AA ;
Sorokin, SV ;
Shubina, TV ;
Sedova, IV ;
Sitnikova, AA ;
Kop'ev, PS ;
Alferov, ZI ;
Lugauer, HJ ;
Reuscher, G ;
Keim, M ;
Fischer, F ;
Waag, A ;
Landwehr, G .
APPLIED PHYSICS LETTERS, 1999, 74 (04) :498-500
[6]   Green-to-Yellow Continuous-Wave Operation of BeZnCdSe Quantum-Well Laser Diodes at Room Temperature [J].
Kasai, Jun-ichi ;
Akimoto, Ryouichi ;
Hasama, Toshifumi ;
Ishikawa, Hiroshi ;
Fujisaki, Sumiko ;
Tanaka, Shigehisa ;
Tsuji, Shinji .
APPLIED PHYSICS EXPRESS, 2011, 4 (08)
[7]   560-nm-continuous wave laser emission from ZnSe-based laser diodes on GaAs [J].
Klude, M ;
Hommel, D .
APPLIED PHYSICS LETTERS, 2001, 79 (16) :2523-2525
[8]   Broadening of submonolayer CdSe sheets in CdSe ZnSe superlattices studied by x-ray diffraction [J].
Kyutt, RN ;
Toropov, AA ;
Sorokin, SV ;
Shubina, TV ;
Ivanov, SV ;
Karlsteen, M ;
Willander, M .
APPLIED PHYSICS LETTERS, 1999, 75 (03) :373-375
[9]   Optically pumped quantum-dot Cd(Zn)Se/ZnSe laser and microchip converter for yellow-green spectral region [J].
Lutsenko, E. V. ;
Voinilovich, A. G. ;
Rzheutskii, N. V. ;
Pavlovskii, V. N. ;
Yablonskii, G. P. ;
Sorokin, S. V. ;
Gronin, S. V. ;
Sedova, I. V. ;
Kop'ev, P. S. ;
Ivanov, S. V. ;
Alanzi, M. ;
Hamidalddin, A. ;
Alyamani, A. .
QUANTUM ELECTRONICS, 2013, 43 (05) :418-422
[10]   Structural and chemical analysis of CdSe/ZnSe nanostructures by transmission electron microscopy [J].
Peranio, N ;
Rosenauer, A ;
Gerthsen, D ;
Sorokin, SV ;
Sedova, IV ;
Ivanov, SV .
PHYSICAL REVIEW B, 2000, 61 (23) :16015-16024