Orthogonal polynomials with respect to the sum of an arbitrary measure and a Bernstein-Szego measure

被引:4
作者
Cachafeiro, A.
Marcellan, F.
Perez, C.
机构
[1] Univ Vigo, ETS Ingn Ind, Dept Matemat Aplicada 1, Vigo 36280, Spain
[2] Univ Carlos III Madrid, Escuela Politecn Super, Dept Matemat, Leganes 28911, Spain
[3] IES Teis Vigo, Dept Didact Matemat, Vigo 36216, Spain
关键词
orthogonal polynomials; Bernstein-Szego measure; Laguerre-Hahn affine functional;
D O I
10.1007/s10444-004-7644-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we study the orthogonal polynomials with respect to a measure which is the sum of a finite positive Borel measure on [0, 2 pi] and a Bernstein - Szego measure. We prove that the measure sum belongs to the Szego class and we obtain several properties about the norms of the orthogonal polynomials, as well as, about the coefficients of the expression which relates the new orthogonal polynomials with the Bernstein - Szego polynomials. When the Bernstein - Szego measure corresponds to a polynomial of degree one, we give a nice explicit algebraic expression for the new orthogonal polynomials.
引用
收藏
页码:81 / 104
页数:24
相关论文
共 10 条
  • [1] [Anonymous], 1975, AM MATH SOC C PUBLIC
  • [2] Lebesgue perturbation of a quasi-definite Hermitian functional.: The positive definite case
    Cachafeiro, A
    Marcellán, F
    Pérez, C
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 : 235 - 250
  • [3] CACHAFEIRO A, 2004, J COMPUT ANAL APPL
  • [4] Gaussian quadrature formulae on the unit circle
    Daruis, L
    González-Vera, P
    Marcellán, F
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) : 159 - 183
  • [5] ELHAY S, 1992, BIT, V32, P144
  • [6] GARCIALAZARO P, 1985, LECT NOTES MATH, V1171, P195
  • [7] Goncharov V., 1962, Amer. Math. Soc. Transl, V19, P1
  • [8] Grenander U, 1958, TOEPLITZ FORMS THEIR
  • [9] KAILATH T, 1983, PREDICTION THEORY HA, P131
  • [10] RETRIEVAL OF HARMONICS FROM A COVARIANCE FUNCTION
    PISARENKO, VF
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1973, 33 (03): : 347 - 366