Research Progress of Metal(I) Substitution in Cu2ZnSn(S,Se)4 Thin Film Solar Cells

被引:5
作者
Zhou, Jiazheng [1 ,3 ]
Xu, Xiao [1 ,3 ]
Duan, Biwen [1 ,3 ]
Shi, Jiangjian [1 ]
Luo, Yanhong [1 ,3 ,4 ]
Wu, Huijue [1 ]
Li, Dongmei [1 ,3 ,4 ]
Meng, Qingbo [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy CAS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu2ZnSn(S; Se)(4); Cu-Zn anti-site defects; metal(I) substitution; crystal growth; band tailing; BAND-GAP; CU2ZNSNS4; EFFICIENCY; AG; CD; LI; NA; DEFECTS; ELIMINATION; PERFORMANCE;
D O I
10.6023/A20100457
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cu2ZnSn(S,Se)(4) solar cell (CZTSSe), as a new type of inorganic thin-film solar cells, has been widely studied in recent years due to the advantages of earth-abundant and environmental-friendly composition elements, high light absorption coefficient and adjustable band gap. CZTSSe solar cell is thus a highly competitive photovoltaic device with potential applications in flexibility, building integrated photovoltaics (BIPV) and so on. So far, 12.6% certified efficiency has been achieved for this kind of solar cells. Open-circuit voltage (V-OC) deficit is always the key factor to unsatisfied efficiency of CZTSSe solar cells, and band tailing, mismatch of energy band structure and deep level defects are the main causes to V-OC deficit. Typically, Cu-Zn disorder-induced defects widely exist in the bulk absorber, due to similar radius of Cu and Zn elements could lead to relatively low formation energy of Cu-Zn and Zn-Cu anti-site defects. Metal(I) substitution is an effective way to solve Cu-Zn disorder, which can well reduce VOC deficit via lowering band tailing and improving the device structure, leading to better cell performance. However, very few review papers have focused on the metal(I) substitution work. In this review, we will summarize the research progress of metal(I) substitution in Cu2ZnSn(S,Se)(4) thin film solar cells. Part I introduces the structure and problems of CZTSSe solar cells. Part II shows the origin of metal(I) substitution and theoretical research on substituted materials. Part III focuses on synthetic methods about metal(I) partial substitution devices and influence on crystal growth, band tailing, interface defects and band structure. Part IV briefly introduces metal(I) total substitution devices. Part V anticipates the prospects and bottleneck of metal(I) substitution devices, and give some possible solutions to these current issues.
引用
收藏
页码:303 / 318
页数:16
相关论文
共 113 条
[91]   The effect of Ag alloying of Cu2(Zn,Cd)SnS4 on the monograin powder properties and solar cell performance [J].
Timmo, Kristi ;
Altosaar, Mare ;
Pilvet, Maris ;
Mikli, Valdek ;
Grossberg, Maarja ;
Danilson, Mati ;
Raadik, Taavi ;
Josepson, Raavo ;
Krustok, Jueri ;
Kauk-Kuusik, Marit .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (42) :24281-24291
[92]   Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 [J].
Walsh, Aron ;
Chen, Shiyou ;
Wei, Su-Huai ;
Gong, Xin-Gao .
ADVANCED ENERGY MATERIALS, 2012, 2 (04) :400-409
[93]   Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency [J].
Wang, Wei ;
Winkler, Mark T. ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Todorov, Teodor K. ;
Zhu, Yu ;
Mitzi, David B. .
ADVANCED ENERGY MATERIALS, 2014, 4 (07)
[94]   Research Progress of Tandem Organic Solar Cells [J].
Wang Wenxuan ;
Wang Jianqiu ;
Zheng Zhong ;
Hou Jianhui .
ACTA CHIMICA SINICA, 2020, 78 (05) :382-396
[95]  
Willi K., 2020, J APPL PHYS, V127
[96]   High-efficiency Cu2ZnSn(S,Se)4 solar cells fabricated through a low-cost solution process and a two-step heat treatment [J].
Wu, Shih-Hsiung ;
Chang, Chia-Wen ;
Chen, Hui-Ju ;
Shih, Chuan-Feng ;
Wang, Yu-Yun ;
Li, Chou-Cheng ;
Chan, Sheng-Wen .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (01) :58-66
[97]   Highly crystalline stannite-phase Cu2XSnS4 (X = Mn, Fe, Co, Ni, Zn and Cd) nanoflower counter electrodes for ZnO-based dye-sensitised solar cells [J].
Xie, Yahong ;
Zhang, Chunyang ;
Yang, Guihua ;
Yang, Jianya ;
Zhou, Xiaofeng ;
Ma, Junbao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 696 :938-946
[98]   Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency [J].
Xin, H. ;
Vorpahl, S. M. ;
Collord, A. D. ;
Braly, I. L. ;
Uhl, A. R. ;
Krueger, B. W. ;
Ginger, D. S. ;
Hillhouse, H. W. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (37) :23859-23866
[99]   Beyond 11% Efficient Sulfide Kesterite Cu2ZnxCd1-xSnS4 Solar Cell: Effects of Cadmium Alloying [J].
Yan, Chang ;
Sun, Kaiwen ;
Huang, Jialiang ;
Johnston, Steve ;
Liu, Fangyang ;
Puthen, Binesh ;
Veettil, Binesh Puthen ;
Sun, Kaile ;
Pu, Aobo ;
Zhou, Fangzhou ;
Stride, John A. ;
Green, Martin A. ;
Hao, Xiaojing .
ACS ENERGY LETTERS, 2017, 2 (04) :930-936
[100]   Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4 [J].
Yan, Chang ;
Liu, Fangyang ;
Song, Ning ;
Ng, Boon K. ;
Stride, John A. ;
Tadich, Anton ;
Hao, Xiaojing .
APPLIED PHYSICS LETTERS, 2014, 104 (17)