Topographic evolution and scaling study of ZnO (0001) single crystal after, low-energy atom beam irradiation

被引:6
作者
Solanki, Vanaraj [1 ,4 ]
Kabiraj, D. [2 ]
Avasthi, D. K. [3 ]
Varma, Shikha [1 ]
机构
[1] Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
[2] Inter Univ Accelerator Ctr, New Delhi 110067, India
[3] Amity Inst Nanotechnol, Noida 201313, India
[4] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
关键词
AFM; ZnO; Roughness exponent; Atom beam sputtering; Scaling; ION; SURFACES; GROWTH; DOTS;
D O I
10.1016/j.nimb.2018.08.015
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The topographic evaluation of the nano-scale pattern, on ZnO (001) surface, and its scaling properties have been investigated here after low energy atom beam irradiation. Preferential sputtering promotes the formation of Zn-rich zones near the surface that serve as the nucleation centers for the spontaneous nanostructure growth. The rms roughness (sigma) however increases with irradiation fluence and displays power law behaviour, sigma similar to t(beta), for t<t(c) (crossover time) but saturates at longer time scale. In the case of t>t(c), sigma is independent of irradiation time but interestingly follows the power law behaviour sigma similar to L-alpha, where L is the size of image used in analysis. The morphology of the surfaces has also been investigated using the height-height correlation and power spectral density methods. The observed values of growth (beta) and roughness (alpha) exponents indicate a scaling behavior that is induced by the disordered but well-defined geometry of the nanostructures.
引用
收藏
页码:56 / 60
页数:5
相关论文
共 44 条
[1]   Formation of self-affine nanostructures on ZnO surfaces by swift heavy ions [J].
Agarwal, D. C. ;
Chauhan, R. S. ;
Avasthi, D. K. ;
Khan, S. A. ;
Kabiraj, D. ;
Sulania, I. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
[2]  
[Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
[3]   Synthesis of metal-polymer nanocomposite for optical applications [J].
Avasthi, D. K. ;
Mishra, Y. K. ;
Kabiraj, D. ;
Lalla, N. P. ;
Pivin, J. C. .
NANOTECHNOLOGY, 2007, 18 (12)
[4]  
Avasthi D. Kanjilal, 2012, APPL SURF SCI, V258, P4122
[5]   Analysis on Binding Energy and Auger Parameter for Estimating Size and Stoichiometry of ZnO Nanorods [J].
Bera, Santanu ;
Dhara, Sandip ;
Velmurugan, S. ;
Tyagi, A. K. .
INTERNATIONAL JOURNAL OF SPECTROSCOPY, 2012,
[6]   Ripple topography on thin ZnO films by grazing and oblique incidence ion sputtering [J].
Bhattacharjee, S. ;
Karmakar, P. ;
Sinha, A. K. ;
Charkrabarti, A. .
APPLIED SURFACE SCIENCE, 2011, 257 (15) :6775-6778
[7]   Nanoscale patterns produced by ion erosion of a solid with codeposition of impurities: The crucial effect of compound formation [J].
Bradley, R. Mark .
PHYSICAL REVIEW B, 2013, 87 (20)
[8]   THEORY OF RIPPLE TOPOGRAPHY INDUCED BY ION-BOMBARDMENT [J].
BRADLEY, RM ;
HARPER, JME .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (04) :2390-2395
[9]   STOCHASTIC-MODEL FOR SURFACE EROSION VIA ION SPUTTERING - DYNAMICAL EVOLUTION FROM RIPPLE MORPHOLOGY TO ROUGH MORPHOLOGY [J].
CUERNO, R ;
MAKSE, HA ;
TOMASSONE, S ;
HARRINGTON, ST ;
STANLEY, HE .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4464-4467
[10]   ZnO nanostructures for optoelectronics: Material properties and device applications [J].
Djurisic, A. B. ;
Ng, A. M. C. ;
Chen, X. Y. .
PROGRESS IN QUANTUM ELECTRONICS, 2010, 34 (04) :191-259