Graded Witt kernels of the compositum of multiquadratic extensions with the function fields of Pfister forms

被引:3
作者
Aravire, Roberto [1 ]
Laghribi, Ahmed [2 ]
O'Ryan, Manuel [3 ]
机构
[1] Univ Arturo Prat, Fac Ingn & Arquitectura, Inst Ciencias Exactas & Nat, Casilla 121, Iquique, Chile
[2] Univ Artois, Fac Sci Jean Perrin, Lab Mathemat Lens, EA 2462, Rue Jean Souvraz SP18, F-62307 Lens, France
[3] Univ Talca, Inst Matemat & Fis, Casilla 721, Talca, Chile
关键词
Quadratic (bilinear) forms; Differential forms; Graded-Witt kernels; Function field of a quadric; Pfister forms; Pfister neighbors; MILNOR K-THEORY; QUADRATIC-FORMS; BILINEAR-FORMS; CHARACTERISTIC-2;
D O I
10.1016/j.jalgebra.2015.11.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic 2 and W-q(F) be the Witt group of nonsingular quadratic forms over F. Let phi be a bilinear Pfister form over F and L be a multiquadratic extension of F of separability degree less than of equal to 2. In this paper we compute the kernel of the natural homomorphism H-2(m+1)(F) -> H-2(m+1) (L(phi)), where H-2(m+1)(F) is the cokernel of the Artin-Schreier operator p : Omega(m)(F) -> Omega(m)(F)/d Omega(m-1)(F) given by xdx1/x1 <^>...<^> dxm/xm -> (x2 - x)dx1/x1 <^>...<^> dxm/xm, where Omega(m)(F) is the space of m-differential forms over F, and F(phi) is the function field of the affine quadric given by the diagonal quadratic form associated to the bilinear form phi. As a consequence, we deduce the kernel of the natural homomorphisms <(I-q(m+1))over bar> (F) <(I-q(m+1))over bar> L(phi)) and I-q(m+1)(F) -> I-q(m+1)(L(phi)), where I-q(m+1)(F) denotes the quotient I-q(m+1)(F)/I-q(m+2)(F) such that I-q(m+1)(F) = (IF)-F-m circle times W-q(F) and (IF)-F-m is the m-th power of the fundamental ideal IF of the Witt ring of F-bilinear forms. We also include some results concerning the case where phi is replaced by a bilinear Pfister neighbor or a quadratic Pfister form. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:635 / 659
页数:25
相关论文
共 16 条
[1]   Annihilators of quadratic and bilinear forms over fields of characteristic two [J].
Aravire, R ;
Baeza, R .
JOURNAL OF ALGEBRA, 2006, 299 (01) :294-308
[2]   MILNOR K-THEORY AND QUADRATIC-FORMS OVER FIELDS OF CHARACTERISTIC 2 [J].
ARAVIRE, R ;
BAEZA, R .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (04) :1087-1107
[3]   The behavior of quadratic and differential forms under function field extensions in characteristic two [J].
Aravire, R ;
Baeza, R .
JOURNAL OF ALGEBRA, 2003, 259 (02) :361-414
[4]  
Aravire R, 2013, P AM MATH SOC, V141, P4191
[5]  
Aravire R, 2009, CONTEMP MATH, V493, P1
[6]  
Hoffmann D., 2014, PREPRINT
[7]   Quadratic forms and Pfister neighbors in characteristic 2 [J].
Hoffmann, DW ;
Laghribi, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (10) :4019-4053
[8]  
KATO K, 1982, LECT NOTES MATH, V967, P215
[9]  
KATO K, 1982, INVENT MATH, V66, P493, DOI 10.1007/BF01389226
[10]   Witt kernels of quadratic forms for purely inseparable multiquadratic extensions in characteristic [J].
Laghribi, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (09) :2481-2486