All flexible electrospun papers based self-charging power system

被引:99
作者
Sun, Na
Wen, Zhen [1 ]
Zhao, Feipeng
Yang, Yanqin
Shao, Huiyun
Zhou, Changjie
Shen, Qingqing
Feng, Kun
Peng, Mingfa
Li, Yanguang
Sun, Xuhui [1 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
基金
中国博士后科学基金;
关键词
Flexible electrospun papers; Triboelectric nanogenerator; Supercapacitor; Self-charging power system; Wearable electronics; TRIBOELECTRIC NANOGENERATORS; BLUE ENERGY; SUPERCAPACITORS; ELECTRONICS; GENERATOR; DRIVEN; UNIT; SKIN;
D O I
10.1016/j.nanoen.2017.05.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To pace with the miniaturization and flexibility tendency of wearable/portable electronics, it is a challenge to develop the lightweight and sustainable power sources with high efficiency. In this work, we proposed an ultralight and flexible self-charging power system via all electrospun paper based triboelectric nanogenerators (EP-TENGs) as energy harvester and all electrospun paper based supercapacitors (EP-SCs) as storage device, respectively. The EP-TENG, made into arch-shape, derived from one nonconductive PAN paper as a triboelectric layer and conductive carbon paper as electrodes. In EP-SC, the conductive carbon paper acted capacitive materials, while the nonconductive PAN paper severed as separator. Therefore, the superiority of the self-charging system is reflected by the properties of these two kinds of papers with lightweight, convenient, low cost, mechanical flexible and tailorable, which were prepared by a simple electrospinning and followed annealing method. When three-parallel EP-TENGs were further integrated with three-series EP-SCs, the all flexible electrospun papers based self-charging power system was constructed. As an effective and innovative power provider, the self-charging system was demonstrated to admirably power an electronic watch and calculator. The proposed self-charging system can be a promising candidate for self-powered wearable electronics and the development of next generation power system in practical applications.
引用
收藏
页码:210 / 217
页数:8
相关论文
共 40 条
[1]   Single-step electrospinning of multi walled carbon nanotubes - Poly(3-octylthiophene) hybrid nano-fibers [J].
Bounioux, Celine ;
Avrahami, Ron ;
Vasilyev, Gleb ;
Patil, Nilesh ;
Zussman, Eyal ;
Yerushalmi-Rozen, Rachel .
POLYMER, 2016, 86 :15-21
[2]   Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science [J].
Cao, Xia ;
Jie, Yang ;
Wang, Ning ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[3]   Foldable All-Solid-State Supercapacitors Integrated with Photodetectors [J].
Chen, Chen ;
Cao, Jun ;
Lu, Qiongqiong ;
Wang, Xinyu ;
Song, Li ;
Niu, Zhiqiang ;
Chen, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (03)
[4]   Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy [J].
Chen, Jun ;
Yang, Jin ;
Li, Zhaoling ;
Fan, Xing ;
Zi, Yunlong ;
Jing, Qingshen ;
Guo, Hengyu ;
Wen, Zhen ;
Pradel, Ken C. ;
Niu, Simiao ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (03) :3324-3331
[5]   Single Nozzle Electrospinning Synthesized MoO2@C Core Shell Nanofibers with High Capacity and Long-Term Stability for Lithium-Ion Storage [J].
Chen, Zhi ;
Yang, Ting ;
Shi, Huimin ;
Wang, Taihong ;
Zhang, Ming ;
Cao, Guozhong .
ADVANCED MATERIALS INTERFACES, 2017, 4 (03)
[6]   Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics [J].
Fan, Feng Ru ;
Tang, Wei ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2016, 28 (22) :4283-4305
[7]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[8]   Stretchable Porous Carbon Nanotube-Elastomer Hybrid Nanocomposite for Harvesting Mechanical Energy [J].
Fan, You Jun ;
Meng, Xian Song ;
Li, Hua Yang ;
Kuang, Shuang Yang ;
Zhang, Lei ;
Wu, Ying ;
Wang, Zhong Lin ;
Zhu, Guang .
ADVANCED MATERIALS, 2017, 29 (02)
[9]   Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J].
Gao, Wei ;
Emaminejad, Sam ;
Nyein, Hnin Yin Yin ;
Challa, Samyuktha ;
Chen, Kevin ;
Peck, Austin ;
Fahad, Hossain M. ;
Ota, Hiroki ;
Shiraki, Hiroshi ;
Kiriya, Daisuke ;
Lien, Der-Hsien ;
Brooks, George A. ;
Davis, Ronald W. ;
Javey, Ali .
NATURE, 2016, 529 (7587) :509-+
[10]  
Gu G., 2017, ACS NANO