Improvement of the Cathode Electrolyte Interphase on P2-Na2/3Ni1/3Mn2/3O2 by Atomic Layer Deposition

被引:186
作者
Alvarado, Judith [1 ,2 ]
Ma, Chuze [2 ]
Wang, Shen [2 ]
Nguyen, Kimberly [2 ]
Kodur, Moses [2 ]
Meng, Ying Shirley [2 ]
机构
[1] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
atomic layer deposition; cathode electrolyte interphase; sodium ion batteries; X-ray photoelectron spectroscopy impedance; SODIUM-ION BATTERIES; X LESS-THAN; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; CARBON ELECTRODES; ENERGY-STORAGE; LITHIUM; LI; NA;
D O I
10.1021/acsami.7b05326
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer deposition (ALD) is a commonly used coating technique for lithium ion battery electrodes. Recently, it has been applied to sodium ion battery anode materials. ALD is known to improve the cycling performance, Coulombic efficiency of batteries, and maintain electrode integrity. Here, the electrochemical performance of uncoated P-2-Na2/3Ni1/3Mn2/3O2 electrodes is compared to that of ALDcoated Al2O3 P-2-Na2/3Ni1/3Mn2/3O2 electrodes. Given that ALD coatings are in the early stage of development for NIB cathode materials, little is known about how ALD coatings, in particular aluminum oxide (Al2O3), affect the electrode-electrolyte O interface. Therefore, full characterizations of its effects are presented in this work. For the first time, X-ray photoelectron spectroscopy (XPS) is used to elucidate the cathode electrolyte interphase (CEI) on ALD-coated electrodes. It contains less carbonate species and more inorganic species, which allows for fast Na kinetics, resulting in significant increase in Coulombic efficiency and decrease in cathode impedance. The effectiveness of Al2O3 ALD- coating is also surprisingly reflected in the enhanced mechanical stability of the particle which prevents particle exfoliation.
引用
收藏
页码:26518 / 26530
页数:13
相关论文
共 69 条
[1]   Chemical composition and morphology of the elevated temperature SEI on graphite [J].
Andersson, AM ;
Edström, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1100-A1109
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   P2-NaxCoyMn1-yO2 (y=0, 0.1) as Cathode Materials in Sodium-Ion Batteries-Effects of Doping and Morphology To Enhance Cycling Stability [J].
Bucher, Nicolas ;
Hartung, Steffen ;
Franklin, Joseph B. ;
Wise, Anna M. ;
Lim, Linda Y. ;
Chen, Han-Yi ;
Weker, Johanna Nelson ;
Toney, Michael F. ;
Srinivasan, Madhavi .
CHEMISTRY OF MATERIALS, 2016, 28 (07) :2041-2051
[4]   Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1132-1140
[5]   Enhanced Cycleabity in Lithium Ion Batteries: Resulting from Atomic Layer Depostion of Al2O3 or TiO2 on LiCoO2 Electrodes [J].
Cheng, Ho-Ming ;
Wang, Fu-Ming ;
Chu, Jinn P. ;
Santhanam, Raman ;
Rick, John ;
Lo, Shen-Chuan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14) :7629-7637
[6]   Effect of Surface Modification on Nano-Structured LiNi0.5Mn1.5O4 Spinel Materials [J].
Cho, Hyung-Man ;
Chen, Michael Vincent ;
MacRae, Alex C. ;
Meng, Ying Shirley .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (30) :16231-16239
[7]   Direct evidence for high Na+ mobility and high voltage structural processes in P2-Nax[LiyNizMn1-y-z]O2 (x, y, z ≤ 1) cathodes from solid- state NMR and DFT calculations [J].
Clement, R. J. ;
Xu, J. ;
Middlemiss, D. S. ;
Alvarado, J. ;
Ma, C. ;
Meng, Y. S. ;
Grey, C. P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (08) :4129-4143
[8]   Review-Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials [J].
Clement, Raphaele J. ;
Bruce, Peter G. ;
Grey, Clare P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2589-A2604
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   The cathode-electrolyte interface in the Li-ion battery [J].
Edström, K ;
Gustafsson, T ;
Thomas, JO .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :397-403