DeepSCP: utilizing deep learning to boost single-cell proteome coverage

被引:12
作者
Wang, Bing [1 ,2 ]
Wang, Yue [3 ]
Chen, Yu [3 ]
Gao, Mengmeng [3 ]
Ren, Jie [3 ]
Guo, Yueshuai [4 ]
Situ, Chenghao [3 ]
Qi, Yaling [3 ]
Zhu, Hui [3 ]
Li, Yan [5 ]
Guo, Xuejiang [1 ,3 ]
机构
[1] Southeast Univ, Sch Med, Nanjing 210009, Peoples R China
[2] Dept Hist & Embryol, State Key Reprod Med, Nanjing, Peoples R China
[3] Nanjing Med Univ, Dept Histol & Embryol, State Key Lab Reprod Med, Nanjing, Peoples R China
[4] Nanjing Med Univ, State Key Lab Reprod Med, Nanjing 211166, Peoples R China
[5] Nanjing Med Univ, Sir Run Run Hosp, Dept Clin Lab, Nanjing 211100, Peoples R China
基金
国家重点研发计划;
关键词
single-cell proteomics; peptide-spectrum matches; retention time; fragment ion intensity; deep learning; LightGBM; PEPTIDE IDENTIFICATION; QUANTIFICATION; CHROMATOGRAPHY; SEQUENCE;
D O I
10.1093/bib/bbac214
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multiplexed single-cell proteomes (SCPs) quantification by mass spectrometry greatly improves the SCP coverage. However, it still suffers from a low number of protein identifications and there is much room to boost proteins identification by computational methods. In this study, we present a novel framework DeepSCP, utilizing deep learning to boost SCP coverage. DeepSCP constructs a series of features of peptide-spectrum matches (PSMs) by predicting the retention time based on the multiple SCP sample sets and fragment ion intensities based on deep learning, and predicts PSM labels with an optimized-ensemble learning model. Evaluation of DeepSCP on public and in-house SCP datasets showed superior performances compared with other state-of-the-art methods. DeepSCP identified more confident peptides and proteins by controlling q-value at 0.01 using target-decoy competition method. As a convenient and low-cost computing framework, DeepSCP will help boost single-cell proteome identification and facilitate the future development and application of single-cell proteomics.
引用
收藏
页数:15
相关论文
共 62 条
[1]   Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods [J].
Abate-Pella, Daniel ;
Freund, Dana M. ;
Ma, Yan ;
Simon-Manso, Yamil ;
Hollender, Juliane ;
Broeckling, Corey D. ;
Huhman, David V. ;
Krokhin, Oleg V. ;
Stoll, Dwight R. ;
Hegeman, Adrian D. ;
Kind, Tobias ;
Fiehn, Oliver ;
Schymanski, Emma L. ;
Prenni, Jessica E. ;
Sumner, Lloyd W. ;
Boswell, Paul G. .
JOURNAL OF CHROMATOGRAPHY A, 2015, 1412 :43-51
[2]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[3]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[4]   SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation [J].
Budnik, Bogdan ;
Levy, Ezra ;
Harmange, Guillaume ;
Slavov, Nikolai .
GENOME BIOLOGY, 2018, 19
[5]   DART-ID increases single-cell proteome coverage [J].
Chen, Albert Tian ;
Franks, Alexander ;
Slavov, Nikolai .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (07)
[6]   Defining the carrier proteome limit for single-cell proteomics [J].
Cheung, Tommy K. ;
Lee, Chien-Yun ;
Bayer, Florian P. ;
McCoy, Atticus ;
Kuster, Bernhard ;
Rose, Christopher M. .
NATURE METHODS, 2021, 18 (01) :76-+
[7]   DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput [J].
Demichev, Vadim ;
Messner, Christoph B. ;
Vernardis, Spyros I. ;
Lilley, Kathryn S. ;
Ralser, Markus .
NATURE METHODS, 2020, 17 (01) :41-+
[8]   High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform [J].
Dou, Maowei ;
Clair, Geremy ;
Tsai, Chia-Feng ;
Xu, Kerui ;
Chrisler, William B. ;
Sontag, Ryan L. ;
Zhao, Rui ;
Moore, Ronald J. ;
Liu, Tao ;
Pasa-Tolic, Ljiljana ;
Smith, Richard D. ;
Shi, Tujin ;
Adkins, Joshua N. ;
Qian, Wei-Jun ;
Kelly, Ryan T. ;
Ansong, Charles ;
Zhu, Ying .
ANALYTICAL CHEMISTRY, 2019, 91 (20) :13119-13127
[9]   Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry [J].
Elias, Joshua E. ;
Gygi, Steven P. .
NATURE METHODS, 2007, 4 (03) :207-214
[10]   Single-Cell Proteomic Analysis Dissects the Complexity of Tumor Microenvironment in Muscle Invasive Bladder Cancer [J].
Feng, Chao ;
Wang, Xi ;
Tao, Yuting ;
Xie, Yuanliang ;
Lai, Zhiyong ;
Li, Zhijian ;
Hu, Jiaxin ;
Tang, Shaomei ;
Pan, Lixin ;
He, Liangyu ;
Wang, Qiuyan ;
Li, Tianyu ;
Mo, Zengnan .
CANCERS, 2021, 13 (21)