Synchronization of bidirectional N-coupled fractional-order chaotic systems with ring connection based on antisymmetric structure

被引:58
作者
Jiang, Cuimei [1 ]
Zada, Akbar [2 ]
Senel, M. Tamer [3 ]
Li, Tongxing [4 ,5 ]
机构
[1] Qilu Univ Technol, Sch Math & Stat, Shandong Acad Sci, Jinan, Shandong, Peoples R China
[2] Univ Peshawar, Dept Math, Peshawar, Pakistan
[3] Erciyes Univ, Fac Sci, Dept Math, Kayseri, Turkey
[4] Linyi Univ, LinDa Inst Shandong Prov Key Lab Network Based In, Linyi, Shandong, Peoples R China
[5] Linyi Univ, Sch Informat Sci & Engn, Linyi, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
Chaos synchronization; Fractional-order chaotic system; Fractional-order Lyapunov function; Ring connection; Antisymmetric structure; DYNAMICS;
D O I
10.1186/s13662-019-2380-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the synchronization problem of N-coupled fractional-order chaotic systems with ring connection via bidirectional coupling. On the basis of the direct design method, we design the appropriate controllers to transform the fractional-order error dynamical system into a nonlinear system with antisymmetric structure. By choosing appropriate fractional-order Lyapunov functions and employing the fractional-order Lyapunov-based stability theory, several sufficient conditions are obtained to ensure the asymptotical stabilization of the fractional-order error system at the origin. The proposed method is universal, simple, and theoretically rigorous. Finally, some numerical examples are presented to illustrate the validity of theoretical results.
引用
收藏
页数:16
相关论文
共 38 条
[1]   Synchronization of fractional order chaotic systems using active control method [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :737-752
[2]   Generalized projective synchronization of different chaotic systems based on antisymmetric structure [J].
Cai, Na ;
Jing, Yuanwei ;
Zhang, Siying .
CHAOS SOLITONS & FRACTALS, 2009, 42 (02) :1190-1196
[3]   Nonlinear dynamics and chaos in a fractional-order financial system [J].
Chen, Wei-Ching .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1305-1314
[4]   Finite-time multi-switching sliding mode synchronisation for multiple uncertain complex chaotic systems with network transmission mode [J].
Chen, Xiangyong ;
Huang, Tingwen ;
Cao, Jinde ;
Park, Ju H. ;
Qiu, Jianlong .
IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (09) :1246-1257
[5]   Finite-time complex function synchronization of multiple complex-variable chaotic systems with network transmission and combination mode [J].
Chen, Xiangyong ;
Cao, Jinde ;
Park, Ju H. ;
Zong, Guangdeng ;
Qiu, Jianlong .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (22) :5461-5471
[6]   Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control [J].
Chen, Xiangyong ;
Park, Ju H. ;
Cao, Jinde ;
Qiu, Jianlong .
NEUROCOMPUTING, 2018, 273 :9-21
[7]   Hybrid synchronization behavior in an array of coupled chaotic systems with ring connection [J].
Chen, Xiangyong ;
Qiu, Jianlong ;
Cao, Jinde ;
He, Haibo .
NEUROCOMPUTING, 2016, 173 :1299-1309
[8]   Synchronization and anti-synchronization of N different coupled chaotic systems with ring connection [J].
Chen, Xiangyong ;
Wang, Chengyong ;
Qiu, Jianlong .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (05)
[9]   Synchronization of N Coupled Chaotic Systems with Ring Connection Based on Special Antisymmetric Structure [J].
Chen, Xiangyong ;
Qiu, Jianlong ;
Song, Qiang ;
Zhang, Ancai .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[10]   Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system [J].
Danca, Marius-F ;
Feckan, Michal ;
Kuznetsov, Nikolay V. ;
Chen, Guanrong .
NONLINEAR DYNAMICS, 2018, 91 (04) :2523-2540