Hamiltonian and long cycles in bipartite graphs with connectivity

被引:2
作者
Gan, Zhiyong [1 ]
Xu, Yanping [2 ]
机构
[1] South China Normal Univ, Sch Comp Sci, Guangzhou 510631, Peoples R China
[2] South China Normal Univ, Student Affairs Dept, Guangzhou 510631, Peoples R China
关键词
Hamiltonian cycle; Long cycle; Bipartite graph; Connectivity; k-extendable; PATHS;
D O I
10.1016/j.dam.2021.05.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph,.(G) the order of G, kappa(G) the connectivity of G and k a positive integer such that k <= (nu(G) - 2)/2. Then G is said to be k-extendable if it has a matching of size k and every matching of size k extends to a perfect matching of G. A graph G is Hamiltonian if it contains a Hamiltonian cycle. In this paper, we define a parameter c(G) and show some of its properties in bipartite graphs. Let G be a bipartite graph with bipartition (X, Y) such that vertical bar X vertical bar = vertical bar Y vertical bar and c(G) > 0, and C a longest cycle in G. We show that 0 < c(G) <= kappa(G)- 1, G is Hamiltonian if nu(G) <= 2 kappa(G)+ 4c(G)-2, and vertical bar V(C)vertical bar >= 6c(G) if nu(G) > 6c(G). We show some of its corollaries in k-extendable, bipartite graphs and two conjectures in k-extendable graphs. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 17 条
[1]  
Gan ZY, 2021, ARS COMBINATORIA, V154, P3
[2]   Hamiltonian Cycle Properties in k-Extendable Non-bipartite Graphs with High Connectivity [J].
Gan, Zhiyong ;
Lou, Dingjun ;
Xu, Yanping .
GRAPHS AND COMBINATORICS, 2020, 36 (04) :1043-1058
[3]  
Gan ZY, 2019, ARS COMBINATORIA, V144, P91
[4]   Advances on the Hamiltonian problem - A survey [J].
Gould, RJ .
GRAPHS AND COMBINATORICS, 2003, 19 (01) :7-52
[5]   UPDATING THE HAMILTONIAN-PROBLEM - A SURVEY [J].
GOULD, RJ .
JOURNAL OF GRAPH THEORY, 1991, 15 (02) :121-157
[6]   Recent Advances on the Hamiltonian Problem: Survey III [J].
Gould, Ronald J. .
GRAPHS AND COMBINATORICS, 2014, 30 (01) :1-46
[7]   Hamiltonian cycles in n-extendable graphs [J].
Kawarabayashi, K ;
Ota, K ;
Saito, A .
JOURNAL OF GRAPH THEORY, 2002, 40 (02) :75-82
[8]  
Li YP, 2018, ARS COMBINATORIA, V139, P3
[9]  
Lou DJ, 2004, DISCRETE APPL MATH, V136, P55, DOI [10.1016/S0166-218X(03)00198-7, 10.1016/S0166-218x(03)00198-7]
[10]   On the structure of minimally n-extendable bipartite graphs [J].
Lou, DJ .
DISCRETE MATHEMATICS, 1999, 202 (1-3) :173-181