Long-range structural effects of a Charcot-Marie-Tooth disease-causing mutation in human glycyl-tRNA synthetase

被引:77
作者
Xie, Wei
Nangle, Leslie A.
Zhang, Wei
Schimmel, Paul
Yang, Xiang-Lei
机构
[1] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
crystal structure; structure-function analysis; dimer interface; inherited peripheral neuropathy; aminoacyl tRNA synthetase;
D O I
10.1073/pnas.0703908104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Functional expansion of specific tRNA synthetases in higher organisms is well documented. These additional functions may explain why dominant mutations in glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase cause Charcot-Marie-Tooth (CMT) disease, the most common heritable disease of the peripheral nervous system. At least 10 disease-causing mutant alleles of GlyRS have been annotated. These mutations scatter broadly across the primary sequence and have no apparent unifying connection. Here we report the structure of wild type and a CMT-causing mutant (G526R) of homodimeric human GlyRS. The mutation is at the site for synthesis of glycyl-adenylate, but the rest of the two structures are closely similar. Significantly, the mutant form diffracts to a higher resolution and has a greater dimer interface. The extra dimer interactions are located approximate to 30 angstrom away from the G526R mutation. Direct experiments confirm the tighter dimer interaction of the G526R protein. The results suggest the possible importance of subtle, long-range structural effects of CMT-causing mutations at the dimer interface. From analysis of a third crystal, an appended motif, found in higher eukaryote GlyRSs, seems not to have a role in these long-range effects.
引用
收藏
页码:9976 / 9981
页数:6
相关论文
共 28 条
[1]   Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V [J].
Antonellis, A ;
Ellsworth, RE ;
Sambuughin, N ;
Puls, I ;
Abel, A ;
Lee-Lin, SQ ;
Jordanova, A ;
Kremensky, I ;
Christodoulou, K ;
Middleton, LT ;
Sivakumar, K ;
Ionasescu, V ;
Funalot, B ;
Vance, JM ;
Goldfarb, LG ;
Fischbeck, KH ;
Green, ED .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 72 (05) :1293-1299
[2]   Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons [J].
Antonellis, Anthony ;
Lee-Lin, Shih-Queen ;
Wasterlain, Amy ;
Leo, Paul ;
Quezado, Martha ;
Goldfarb, Lev G. ;
Myung, Kyungjae ;
Burgess, Shawn ;
Fischbeck, Kenneth H. ;
Green, Eric D. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (41) :10397-10406
[3]   Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine [J].
Arnez, JG ;
Dock-Bregeon, AC ;
Moras, D .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 286 (05) :1449-1459
[4]   CATALYTIC PROPERTIES OF TYROSYL RIBONUCLEIC ACID SYNTHETASES FROM ESCHERICHIA COLI AND BACILLUS SUBTILIS [J].
CALENDAR, R ;
BERG, P .
BIOCHEMISTRY, 1966, 5 (05) :1690-&
[5]   Miscellaneous algorithms for density modification [J].
Cowtan, K ;
Main, P .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1998, 54 :487-493
[6]   11 DOWN AND 9 TO GO [J].
CUSACK, S .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (10) :824-831
[7]   Coexistence of CMT-2D and distal SMA-V phenotypes in an Italian family with a GARS gene mutation [J].
Del Bo, R ;
Locatelli, F ;
Corti, S ;
Scarlato, M ;
Ghezzi, S ;
Prelle, A ;
Fagiolari, G ;
Moggio, M ;
Carpo, M ;
Bresolin, N ;
Comi, GP .
NEUROLOGY, 2006, 66 (05) :752-754
[8]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[9]   ACTIVE-SITE TITRATION AND AMINOACYL ADENYLATE BINDING STOICHIOMETRY OF AMINOACYL-TRANSFER-RNA SYNTHETASES [J].
FERSHT, AR ;
ASHFORD, JS ;
BRUTON, CJ ;
JAKES, R ;
KOCH, GLE ;
HARTLEY, BS .
BIOCHEMISTRY, 1975, 14 (01) :1-4
[10]  
Freist W, 1996, BIOL CHEM H-S, V377, P343