Ate pairing on hyperelliptic curves

被引:0
作者
Granger, R. [1 ]
Hess, F. [2 ]
Oyono, R. [3 ]
Theriault, N. [4 ]
Vercauteren, F. [5 ]
机构
[1] Univ Bristol, Dept Comp Sci, MVB, Woodland Rd, Bristol BS8 1UB, Avon, England
[2] Tech Univ Berlin, Inst Math Sekr, Fak 2, D-10623 Berlin, Germany
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[4] Univ Talca, Inst Matemat & Fis, Talca, Chile
[5] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Leuven, Belgium
来源
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2007 | 2007年 / 4515卷
基金
英国工程与自然科学研究理事会;
关键词
Tate pairing; Ate pairing; hyperelliptic curves; finite fields;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we show that the Ate pairing, originally defined for elliptic curves, generalises to hyperelliptic curves and in fact to arbitrary algebraic curves. It has the following surprising properties: The loop length in Miller's algorithm can be up to g times shorter than for the Tate pairing, with g the genus of the curve, and the pairing is automatically reduced, i.e. no final exponentiation is needed.
引用
收藏
页码:430 / +
页数:4
相关论文
共 25 条