Ate pairing on hyperelliptic curves

被引:0
作者
Granger, R. [1 ]
Hess, F. [2 ]
Oyono, R. [3 ]
Theriault, N. [4 ]
Vercauteren, F. [5 ]
机构
[1] Univ Bristol, Dept Comp Sci, MVB, Woodland Rd, Bristol BS8 1UB, Avon, England
[2] Tech Univ Berlin, Inst Math Sekr, Fak 2, D-10623 Berlin, Germany
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[4] Univ Talca, Inst Matemat & Fis, Talca, Chile
[5] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Leuven, Belgium
来源
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2007 | 2007年 / 4515卷
基金
英国工程与自然科学研究理事会;
关键词
Tate pairing; Ate pairing; hyperelliptic curves; finite fields;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we show that the Ate pairing, originally defined for elliptic curves, generalises to hyperelliptic curves and in fact to arbitrary algebraic curves. It has the following surprising properties: The loop length in Miller's algorithm can be up to g times shorter than for the Tate pairing, with g the genus of the curve, and the pairing is automatically reduced, i.e. no final exponentiation is needed.
引用
收藏
页码:430 / +
页数:4
相关论文
共 25 条
  • [1] [Anonymous], J RAMANUJAN MATH SOC
  • [2] AVANZI R, 2004, LECT NOTES COMPUTER, V3156, P133
  • [3] AVANZI R, 2006, 200607 CACR
  • [4] Avanzi R., 2006, Handbook of elliptic and hyperelliptic cryptography
  • [5] BARRETO PSL, 2005, IN PRESS DESIGNS COD
  • [6] Barreto PSLM, 2002, LECT NOTES COMPUT SC, V2442, P354
  • [7] CANTOR DG, 1987, MATH COMPUT, V48, P95, DOI 10.1090/S0025-5718-1987-0866101-0
  • [8] Duursma I, 2003, LECT NOTES COMPUT SC, V2894, P111
  • [9] A REMARK CONCERNING M-DIVISIBILITY AND THE DISCRETE LOGARITHM IN THE DIVISOR CLASS GROUP OF CURVES
    FREY, G
    RUCK, HG
    [J]. MATHEMATICS OF COMPUTATION, 1994, 62 (206) : 865 - 874
  • [10] Frey G, 2006, LECT NOTES COMPUT SC, V4076, P466