Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning

被引:225
作者
Shen, Liyue [1 ,2 ]
Zhao, Wei [1 ]
Xing, Lei [1 ,2 ]
机构
[1] Stanford Univ, Dept Radiat Oncol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
SPATIAL-RESOLUTION PROPERTIES; 3D TUMOR-LOCALIZATION; DIABETIC-RETINOPATHY; NEURAL-NETWORKS; CANCER; VALIDATION; MRI;
D O I
10.1038/s41551-019-0466-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.
引用
收藏
页码:880 / 888
页数:9
相关论文
共 57 条
[1]   Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey [J].
Akhtar, Naveed ;
Mian, Ajmal .
IEEE ACCESS, 2018, 6 :14410-14430
[2]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[3]   DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving [J].
Chen, Chenyi ;
Seff, Ari ;
Kornhauser, Alain ;
Xiao, Jianxiong .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2722-2730
[4]   Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets [J].
Chen, Guang-Hong ;
Tang, Jie ;
Leng, Shuai .
MEDICAL PHYSICS, 2008, 35 (02) :660-663
[5]   Compressed sensing based cone-beam computed tomography reconstruction with a first-order method [J].
Choi, Kihwan ;
Wang, Jing ;
Zhu, Lei ;
Suh, Tae-Suk ;
Boyd, Stephen ;
Xing, Lei .
MEDICAL PHYSICS, 2010, 37 (09) :5113-5125
[6]  
Collobert R., 2008, Proceedings of the 25th international conference on Machine learning, V25, P160, DOI DOI 10.1145/1390156.1390177
[7]  
Engl Heinz Werner, 1996, Mathematics and its Applications, V375
[8]   Neural scene representation and rendering [J].
Eslami, S. M. Ali ;
Rezende, Danilo Jimenez ;
Besse, Frederic ;
Viola, Fabio ;
Morcos, Ari S. ;
Garnelo, Marta ;
Ruderman, Avraham ;
Rusu, Andrei A. ;
Danihelka, Ivo ;
Gregor, Karol ;
Reichert, David P. ;
Buesing, Lars ;
Weber, Theophane ;
Vinyals, Oriol ;
Rosenbaum, Dan ;
Rabinowitz, Neil ;
King, Helen ;
Hillier, Chloe ;
Botvinick, Matt ;
Wierstra, Daan ;
Kavukcuoglu, Koray ;
Hassabis, Demis .
SCIENCE, 2018, 360 (6394) :1204-+
[9]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[10]   Robust Physical-World Attacks on Deep Learning Visual Classification [J].
Eykholt, Kevin ;
Evtimov, Ivan ;
Fernandes, Earlence ;
Li, Bo ;
Rahmati, Amir ;
Xiao, Chaowei ;
Prakash, Atul ;
Kohno, Tadayoshi ;
Song, Dawn .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1625-1634