Modules with chain conditions up to isomorphism

被引:33
作者
Facchini, Alberto [1 ]
Nazemian, Zahra [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
[2] Isfahan Univ Technol, Esfahan, Iran
关键词
Lattice of submodules; Modules; Chain conditions;
D O I
10.1016/j.jalgebra.2016.01.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study modules with chain conditions up to isomorphism, in the following sense. We say that a right module M is isoartinian if, for every descending chain M >= M-1 >= M-2 >= center dot center dot center dot of submodules of M, there exists an index n >= 1 such that M-n is isomorphic to M-i for every i >= n. A ring R is right isoartinian if R-R is an isoartinian module. Similarly we define isonoetherian and isosimple modules and rings. We determine a number of properties of such modules and rings, giving several examples. For instance, we prove that a ring R is a right isoartinian semiprime right noetherian ring if and only if R is a finite direct product of matrix rings over principal right ideal domains. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:578 / 601
页数:24
相关论文
共 15 条
[1]  
[Anonymous], 1992, GRAD TEXTS MATH
[2]   WHEN IS A SELF-INJECTIVE SEMIPERFECT RING QUASI-FROBENIUS [J].
CLARK, J ;
VANHUYNH, D .
JOURNAL OF ALGEBRA, 1994, 165 (03) :531-542
[3]   Modules with RD-composition series over a commutative ring [J].
Couchot, F .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (07) :3171-3194
[4]   GENERALIZED DEDEKIND DOMAINS AND THEIR INJECTIVE-MODULES [J].
FACCHINI, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 94 (02) :159-173
[5]  
Facchini A., 1998, PROGR MATH, V167
[6]   A CLASS OF RINGS GENERALIZING THE DEDEKIND RINGS [J].
FONTANA, M ;
POPESCU, N .
JOURNAL OF ALGEBRA, 1995, 173 (01) :44-66
[7]  
FUCHS L, 2001, MATH SURVEYS MONOGR, V84
[8]  
Goodearl K.R, 1976, PURE APPL MATH, V33
[9]  
Gordon R., 1978, MEM AM MATH SOC
[10]  
Gratzer G., 1978, General lattice theory