Physical and biological beam modeling for carbon beam scanning at Osaka Heavy Ion Therapy Center

被引:18
作者
Fujitaka, Shinichiro [1 ]
Fujii, Yusuke [1 ]
Nihongi, Hideaki [2 ]
Nakayama, Satoshi [2 ]
Takashina, Masaaki [3 ]
Hamatani, Noriaki [3 ]
Tsubouchi, Toshiro [3 ]
Yagi, Masashi [4 ]
Minami, Kazumasa [5 ]
Ogawa, Kazuhiko [5 ]
Mizoe, Junetsu [3 ]
Kanai, Tatsuaki [3 ]
机构
[1] Hitachi Ltd, Res & Dev Grp, Hitachi, Ibaraki, Japan
[2] Hitachi Ltd, Smart Life Business Management Div, Kashiwa, Chiba, Japan
[3] Osaka Heavy Ion Therapy Ctr, Osaka, Osaka, Japan
[4] Osaka Univ, Grad Sch Med, Dept Carbon Ion Radiotherapy, Suita, Osaka, Japan
[5] Osaka Univ, Grad Sch Med, Dept Radiat Oncol, Suita, Osaka, Japan
关键词
beam modeling; carbon beam scanning; LQ model; RBE; triple Gaussian; SYSTEM; RADIOTHERAPY; IRRADIATION; CALIBRATION; SIMULATION; DESIGN;
D O I
10.1002/acm2.13262
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
We have developed physical and biological beam modeling for carbon scanning therapy at the Osaka Heavy Ion Therapy Center (Osaka HIMAK). Carbon beam scanning irradiation is based on continuous carbon beam scanning, which adopts hybrid energy changes using both accelerator energy changes and binary range shifters in the nozzles. The physical dose calculation is based on a triple Gaussian pencil-beam algorithm, and we thus developed a beam modeling method using dose measurements and Monte Carlo simulation for the triple Gaussian. We exploited a biological model based on a conventional linear-quadratic (LQ) model and the photon equivalent dose, without considering the dose dependency of the relative biological effectiveness (RBE), to fully comply with the carbon passive dose distribution using a ridge filter. We extended a passive ridge-filter design method, in which carbon and helium LQ parameters are applied to carbon and fragment isotopes, respectively, to carbon scanning treatment. We then obtained radiation quality data, such as the linear energy transfer (LET) and LQ parameters, by Monte Carlo simulation. The physical dose was verified to agree with measurements to within +/- 2% for various patterns of volume irradiation. Furthermore, the RBE in the middle of a spread-out Bragg peak (SOBP) reproduced that from passive dose distribution results to within +/- 1.5%. The developed carbon beam modeling and dose calculation program was successfully applied in clinical use at Osaka HIMAK.
引用
收藏
页码:77 / 92
页数:16
相关论文
共 19 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas MD Anderson Cancer Center, Proton Therapy Center, Houston [J].
Gillin, Michael T. ;
Sahoo, Narayan ;
Bues, Martin ;
Ciangaru, George ;
Sawakuchi, Gabriel ;
Poenisch, Falk ;
Arjomandy, Bijan ;
Martin, Craig ;
Titt, Uwe ;
Suzuki, Kazumichi ;
Smith, Alfred R. ;
Zhu, X. Ronald .
MEDICAL PHYSICS, 2010, 37 (01) :154-163
[3]  
Hamatani N., PLOS ONE
[4]   A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning [J].
Inaniwa, T. ;
Kanematsu, N. .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (01) :437-451
[5]   Implementation of a triple Gaussian beam model with subdivision and redefinition against density heterogeneities in treatment planning for scanned carbon-ion radiotherapy [J].
Inaniwa, T. ;
Kanematsu, N. ;
Hara, Y. ;
Furukawa, T. ;
Fukahori, M. ;
Nakao, M. ;
Shirai, T. .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (18) :5361-5386
[6]   Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan [J].
Inaniwa, Taku ;
Kanematsu, Nobuyuki ;
Matsufuji, Naruhiro ;
Kanai, Tatsuaki ;
Shirai, Toshiyuki ;
Noda, Koji ;
Tsuji, Hiroshi ;
Kamada, Tadashi ;
Tsujii, Hirohiko .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (08) :3271-3286
[7]   Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model [J].
Inaniwa, Taku ;
Furukawa, Takuji ;
Kase, Yuki ;
Matsufuji, Naruhiro ;
Toshito, Toshiyuki ;
Matsumoto, Yoshitaka ;
Furusawa, Yoshiya ;
Noda, Koji .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (22) :6721-6737
[8]   Field-size effect of physical doses in carbon-ion scanning using range shifter plates [J].
Inaniwa, Taku ;
Furukawa, Takuji ;
Nagano, Ai ;
Sato, Shinji ;
Saotome, Naoya ;
Noda, Koji ;
Kanai, Tatsuaki .
MEDICAL PHYSICS, 2009, 36 (07) :2889-2897
[9]   A calibration procedure for beam monitors in a scanned beam of heavy charged particles [J].
Jäkel, O ;
Hartmann, GH ;
Karger, CP ;
Heeg, P ;
Vatnitsky, S .
MEDICAL PHYSICS, 2004, 31 (05) :1009-1013
[10]   Examination of GyE system for HIMAC carbon therapy [J].
Kanai, T ;
Matsufuji, N ;
Miyamoto, T ;
Mizoe, J ;
Kamada, T ;
Tsuji, H ;
Kato, H ;
Baba, M ;
Tsujii, H .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 64 (02) :650-656