Analysis of affinely parameter-varying systems using parameter-dependent Lyapunov functions

被引:0
|
作者
Sparks, AG [1 ]
机构
[1] FIGC, WL, Wright Patterson AFB, OH 45433 USA
来源
PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5 | 1997年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stability and performance of linear parameter-varying systems whose parameters appear affinely are considered. Parameter dependent Lyapunov functions and the S-procedure are used to derive convex conditions in the form of linear matrix inequalities (LMIs) that guarantee stability and an induced L-2 norm bound for all allowable parameter variations. In each case, the parameter dependence is eliminated from the LMI so that no parameter gridding is required to verify the condition. The new analysis technique is an improvement over existing results that require LMIs to be evaluated over a dense grid of parameter values.
引用
收藏
页码:990 / 991
页数:2
相关论文
共 50 条
  • [41] PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS AND THE POPOV CRITERION IN ROBUST ANALYSIS AND SYNTHESIS
    HADDAD, WM
    BERNSTEIN, DS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (03) : 536 - 543
  • [42] Parameter-dependent Lyapunov functions applied to analysis of induction motor stability
    Cauët, S
    Rambault, L
    Bachelier, O
    Mehdi, D
    CONTROL ENGINEERING PRACTICE, 2002, 10 (03) : 337 - 345
  • [43] Output feedback controller design for polynomial linear parameter varying system via parameter-dependent Lyapunov functions
    Han, Xiaobao
    Liu, Zhenbao
    Li, Huacong
    Liu, Xianwei
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (02)
  • [44] Gain-scheduled L-one control for linear parameter-varying systems with parameter-dependent delays
    Li Y.
    Liang Y.
    Journal of Control Theory and Applications, 2011, 9 (4): : 617 - 623
  • [45] Gain-scheduled H2 controller synthesis for linear parameter varying systems via parameter-dependent Lyapunov functions
    de Souza, CE
    Trofino, A
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2006, 16 (05) : 243 - 257
  • [46] ROBUST STABILITY OF POLYTOPIC SYSTEMS VIA AFFINE PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS
    Yang, Guang-Hong
    Dong, Jiuxiang
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (05) : 2642 - 2662
  • [47] Robust stability design of linear systems with uncertain parameters using parameter-dependent Lyapunov functions
    Ouyang, Gao-Xiang
    Ni, Mao-Lin
    Sun, Cheng-Qi
    Kongzhi yu Juece/Control and Decision, 2008, 23 (12): : 1432 - 1434
  • [48] Stability and Stabilization of Discrete Switched Systems based on Parameter-Dependent Lyapunov Functions
    Wang, Tong
    Wu, Songpu
    Wang, Qing
    Dong, Chaoyang
    MACHINE DESIGN AND MANUFACTURING ENGINEERING II, PTS 1 AND 2, 2013, 365-366 : 932 - +
  • [49] Robust stability of polytopic systems via polynomially parameter-dependent Lyapunov functions
    Chesi, G
    Garulli, A
    Tesi, A
    Vicino, A
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 4670 - 4675
  • [50] Robust stability of polytopic systems via affine parameter-dependent Lyapunov functions
    Yang, Guang-Hong
    Dong, Jiuxiang
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 75 - 80