Analysis of affinely parameter-varying systems using parameter-dependent Lyapunov functions

被引:0
作者
Sparks, AG [1 ]
机构
[1] FIGC, WL, Wright Patterson AFB, OH 45433 USA
来源
PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5 | 1997年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stability and performance of linear parameter-varying systems whose parameters appear affinely are considered. Parameter dependent Lyapunov functions and the S-procedure are used to derive convex conditions in the form of linear matrix inequalities (LMIs) that guarantee stability and an induced L-2 norm bound for all allowable parameter variations. In each case, the parameter dependence is eliminated from the LMI so that no parameter gridding is required to verify the condition. The new analysis technique is an improvement over existing results that require LMIs to be evaluated over a dense grid of parameter values.
引用
收藏
页码:990 / 991
页数:2
相关论文
共 50 条
  • [31] Stability of Linear Parameter Varying Systems based on Parameter Dependent Lyapunov Functions
    Aouani, Nedia
    Salhi, Salah
    Garcia, Germain
    Ksouri, Mekki
    2012 16TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (MELECON), 2012, : 1021 - 1024
  • [32] Affine Parameter-Dependent Lyapunov Functions for LPV Systems With Affine Dependence
    Cox, Pepijn B.
    Weiland, Siep
    Toth, Roland
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (11) : 3865 - 3872
  • [33] Control design of switched LPV systems using multiple parameter-dependent Lyapunov functions
    Lu, B
    Wu, F
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 3875 - 3880
  • [34] Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions
    Wu, F
    Dong, K
    ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 587 - 592
  • [35] Robust stability of linear stationary systems: Analysis by parameter-dependent Lyapunov quadratic functions
    Rapoport, LB
    AUTOMATION AND REMOTE CONTROL, 1998, 59 (08) : 1171 - 1176
  • [36] Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions
    Wu, F
    Dong, K
    AUTOMATICA, 2006, 42 (01) : 39 - 50
  • [37] Analysis and synthesis of reliable flight control systems via parameter-dependent Lyapunov functions
    Liao, F
    Wang, JL
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2004, 218 (I6) : 433 - 450
  • [38] Analysis of LPV systems using a piecewise affine parameter-dependent Lyapunov function
    Lim, S
    How, JP
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 978 - 983
  • [39] Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions
    Chesi, G.
    Garulli, A.
    Tesi, A.
    Vicino, A.
    AUTOMATICA, 2007, 43 (02) : 309 - 316
  • [40] On the numerical verification of a counterexample on parameter-dependent Lyapunov functions
    Aksoy, Birgul
    Buyukkoroglu, Taner
    Dzhafarov, Vakif
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 492