Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information

被引:31
作者
Guo, Song [1 ]
Norris, Sean [2 ]
Bialek, Janusz [2 ]
机构
[1] London Power Associates Ltd, Manchester, Lancs, England
[2] Univ Durham, Sch Engn & Comp Sci, Durham, England
基金
英国工程与自然科学研究理事会;
关键词
Dynamic power system modeling; parameter estimation; small signal analysis; synchronous generators; wide area measurements; ROBUST RLS METHODS; ONLINE ESTIMATION; ELECTROMECHANICAL MODES;
D O I
10.1109/TPWRS.2014.2316916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for estimating parameters of a dynamic system model is presented using estimates of dynamic system modes (frequency and damping) obtained from wide area measurement systems (WAMS). The parameter estimation scheme is based on weighted least squares (WLS) method that utilizes sensitivities of the measured modal frequencies and damping to the parameters. The paper concentrates on estimating the values of generator inertias but the proposed methodology is general and can be used to identify other generator parameters such as damping coefficients. The methodology has been tested using a wide range of accuracy in the measured modes of oscillations. The results suggest that the methodology is capable of estimating accurately inertias and replicating the dynamic behavior of the power system. It has been shown that the damping measurements do not influence estimation of generator inertia. The method has overcome the problem of observability, when there were fewer measurements than the parameters to be estimated, by including the assumed values of parameters as pseudo-measurements.
引用
收藏
页码:2854 / 2861
页数:8
相关论文
共 50 条
  • [21] Parameter estimation of the model of a synchronous generator working in multi-machine power system
    Berhausen, Sebastian
    Paszek, Stefan
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (08): : 192 - 197
  • [22] Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models
    Qiu, Xiaoyan
    Zhang, Hang
    Qiu, Yiwei
    Zhou, Yi
    Zang, Tianlei
    Zhou, Buxiang
    Qi, Ruomei
    Lin, Jin
    Wang, Jiepeng
    APPLIED ENERGY, 2023, 348
  • [23] Dynamic Dictionary Algorithms for Model Order and Parameter Estimation
    Austin, Christian D.
    Ash, Joshua N.
    Moses, Randolph L.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (20) : 5117 - 5130
  • [24] A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems
    Petra, Noemi
    Petra, Cosmin G.
    Zhang, Zheng
    Constantinescu, Emil M.
    Anitescu, Mihai
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) : 2735 - 2743
  • [25] Problem Diagnostics and Model Refinement in Dynamic Parameter Estimation
    Brauner, Neima
    Shacham, Mordechai
    24TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A AND B, 2014, 33 : 343 - 348
  • [26] Nonlinear dynamic load modelling: Model and parameter estimation
    Ju, P
    Handschin, E
    Karlsson, D
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (04) : 1689 - 1694
  • [27] On the parameter estimation and modeling of aggregate power system loads
    Knyazkin, V
    Cañizares, CA
    Söder, LH
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (02) : 1023 - 1031
  • [28] Parameter estimation from power system disturbance measurements
    Hiskens, IA
    Koeman, A
    PROCEEDINGS OF EMPD '98 - 1998 INTERNATIONAL CONFERENCE ON ENERGY MANAGEMENT AND POWER DELIVERY, VOLS 1 AND 2 AND SUPPLEMENT, 1998, : 667 - 672
  • [29] PARAMETER ERROR IDENTIFICATION AND ESTIMATION IN POWER-SYSTEM STATE ESTIMATION
    LIU, WHE
    LIM, SL
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (01) : 200 - 209
  • [30] Adaptive Observer and Parameter Estimation for a Series Elastic Actuator System
    Song, Jiangchao
    Xing, Yashan
    Na, Jing
    Gao, Guanbin
    Ren, Xuemei
    Lu, Sheng
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2025, : 1134 - 1141