Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information

被引:32
作者
Guo, Song [1 ]
Norris, Sean [2 ]
Bialek, Janusz [2 ]
机构
[1] London Power Associates Ltd, Manchester, Lancs, England
[2] Univ Durham, Sch Engn & Comp Sci, Durham, England
基金
英国工程与自然科学研究理事会;
关键词
Dynamic power system modeling; parameter estimation; small signal analysis; synchronous generators; wide area measurements; ROBUST RLS METHODS; ONLINE ESTIMATION; ELECTROMECHANICAL MODES;
D O I
10.1109/TPWRS.2014.2316916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for estimating parameters of a dynamic system model is presented using estimates of dynamic system modes (frequency and damping) obtained from wide area measurement systems (WAMS). The parameter estimation scheme is based on weighted least squares (WLS) method that utilizes sensitivities of the measured modal frequencies and damping to the parameters. The paper concentrates on estimating the values of generator inertias but the proposed methodology is general and can be used to identify other generator parameters such as damping coefficients. The methodology has been tested using a wide range of accuracy in the measured modes of oscillations. The results suggest that the methodology is capable of estimating accurately inertias and replicating the dynamic behavior of the power system. It has been shown that the damping measurements do not influence estimation of generator inertia. The method has overcome the problem of observability, when there were fewer measurements than the parameters to be estimated, by including the assumed values of parameters as pseudo-measurements.
引用
收藏
页码:2854 / 2861
页数:8
相关论文
共 50 条
[21]   Online Model-Free Estimation of the Dynamic System Model for a Power System With Renewables in Ambient Conditions [J].
Guo, Jinpeng ;
Wang, Xiaozhe ;
Ooi, Boon-Teck .
IEEE ACCESS, 2020, 8 :96878-96887
[22]   Parameter estimation of PMSM using Adaptive Backstepping Technique [J].
Prashanth, K. V. ;
Navada, Girisha H. .
PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY CONVERSION TECHNOLOGIES (ICAECT): INTELLIGENT ENERGY MANAGEMENT: TECHNOLOGIES AND CHALLENGES, 2014, :1-6
[23]   Parameter estimation of the model of a synchronous generator working in multi-machine power system [J].
Berhausen, Sebastian ;
Paszek, Stefan .
PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (08) :192-197
[24]   Problem Diagnostics and Model Refinement in Dynamic Parameter Estimation [J].
Brauner, Neima ;
Shacham, Mordechai .
24TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A AND B, 2014, 33 :343-348
[25]   Dynamic Dictionary Algorithms for Model Order and Parameter Estimation [J].
Austin, Christian D. ;
Ash, Joshua N. ;
Moses, Randolph L. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (20) :5117-5130
[26]   Nonlinear dynamic load modelling: Model and parameter estimation [J].
Ju, P ;
Handschin, E ;
Karlsson, D .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (04) :1689-1694
[27]   A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems [J].
Petra, Noemi ;
Petra, Cosmin G. ;
Zhang, Zheng ;
Constantinescu, Emil M. ;
Anitescu, Mihai .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) :2735-2743
[28]   PARAMETER ERROR IDENTIFICATION AND ESTIMATION IN POWER-SYSTEM STATE ESTIMATION [J].
LIU, WHE ;
LIM, SL .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (01) :200-209
[29]   On the parameter estimation and modeling of aggregate power system loads [J].
Knyazkin, V ;
Cañizares, CA ;
Söder, LH .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (02) :1023-1031
[30]   Parameter estimation from power system disturbance measurements [J].
Hiskens, IA ;
Koeman, A .
PROCEEDINGS OF EMPD '98 - 1998 INTERNATIONAL CONFERENCE ON ENERGY MANAGEMENT AND POWER DELIVERY, VOLS 1 AND 2 AND SUPPLEMENT, 1998, :667-672