Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information

被引:31
作者
Guo, Song [1 ]
Norris, Sean [2 ]
Bialek, Janusz [2 ]
机构
[1] London Power Associates Ltd, Manchester, Lancs, England
[2] Univ Durham, Sch Engn & Comp Sci, Durham, England
基金
英国工程与自然科学研究理事会;
关键词
Dynamic power system modeling; parameter estimation; small signal analysis; synchronous generators; wide area measurements; ROBUST RLS METHODS; ONLINE ESTIMATION; ELECTROMECHANICAL MODES;
D O I
10.1109/TPWRS.2014.2316916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for estimating parameters of a dynamic system model is presented using estimates of dynamic system modes (frequency and damping) obtained from wide area measurement systems (WAMS). The parameter estimation scheme is based on weighted least squares (WLS) method that utilizes sensitivities of the measured modal frequencies and damping to the parameters. The paper concentrates on estimating the values of generator inertias but the proposed methodology is general and can be used to identify other generator parameters such as damping coefficients. The methodology has been tested using a wide range of accuracy in the measured modes of oscillations. The results suggest that the methodology is capable of estimating accurately inertias and replicating the dynamic behavior of the power system. It has been shown that the damping measurements do not influence estimation of generator inertia. The method has overcome the problem of observability, when there were fewer measurements than the parameters to be estimated, by including the assumed values of parameters as pseudo-measurements.
引用
收藏
页码:2854 / 2861
页数:8
相关论文
共 50 条
  • [1] Estimation of Parameters of a Dynamic Generator Model From Modal PMU Measurements
    Gorbunov, Andrey
    Dymarsky, Anatoly
    Bialek, Janusz
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (01) : 53 - 62
  • [2] Dynamic State Estimation for Power System Control and Protection IEEE Task Force on Power System Dynamic State and Parameter Estimation
    Liu, Yu
    Singh, Abhinav Kumar
    Zhao, Junbo
    Meliopoulos, A. P. Sakis
    Pal, Bikash
    Ariff, Mohd Aifaa bin Mohd
    Van Cutsem, Thierry
    Glavic, Mevludin
    Huang, Zhenyu
    Kamwa, Innocent
    Mili, Lamine
    Mir, Abdul Saleem
    Taha, Ahmad
    Terzija, Vladimir
    Yu, Shenglong
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (06) : 5909 - 5921
  • [3] Parameter Estimation of GTD Model using Iterative Adaptive Approach
    Hu, Pengjiang
    Xu, Shiyou
    Zou, Jiangwei
    Chen, Zengping
    2017 IEEE SENSORS, 2017, : 397 - 399
  • [4] State and Parameter Estimation of Power Systems using Phasor Measurement Units as Bilinear System Model
    Kumar, Rajnish
    Giesselmann, Michael G.
    He, Miao
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2016, 6 (04): : 1373 - 1384
  • [5] Power Demand Forecasting Using Stochastic Model: Parameter Estimation
    Ma, Ruihong
    Wu, Rentao
    Khanwala, Mustafa A.
    Li, Dan
    Dang, Shuping
    2015 MODERN ELECTRIC POWER SYSTEMS (MEPS), 2015,
  • [6] Modal parameter estimation using interacting Kalman filter
    Zghal, Meriem
    Mevel, Laurent
    Del Moral, Pierre
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 47 (1-2) : 139 - 150
  • [7] Dynamic parameter estimation for hydrological model
    Singh S.K.
    International Journal of Hydrology Science and Technology, 2019, 9 (02) : 124 - 136
  • [8] Parameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm
    Gholipour, R.
    Khosravi, A.
    Mojallali, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2013, 26 (03): : 257 - 262
  • [9] Robust Parameter Estimation of the French Power System Using Field Data
    Zhao, Junbo
    Fliscounakis, Stephane
    Panciatici, Patrick
    Mili, Lamine
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) : 5334 - 5344
  • [10] A Parameter Estimation of Fractional Order Grey Model Based on Adaptive Dynamic Cat Swarm Optimization
    Lin, Bin-yan
    Gao, Fei
    Wang, Meng
    Xiong, Yu-yao
    Li, An-sheng
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2018), 2018, 310 : 54 - 62