Refined semiclassical asymptotics for fractional powers of the Laplace operator

被引:23
作者
Frank, Rupert L. [1 ,2 ]
Geisinger, Leander [1 ,3 ]
机构
[1] Princeton Univ, Dept Math, Washington Rd, Princeton, NJ 08544 USA
[2] CALTECH, Math 253 37, Pasadena, CA 91125 USA
[3] Univ Stuttgart, Dept Math, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 712卷
关键词
STABLE PROCESSES; HALF-LINE; INTERVAL; DOMAINS; TRACE;
D O I
10.1515/crelle-2013-0120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the fractional Laplacian on a domain and investigate the asymptotic behavior of its eigenvalues. Extending methods from semi-classical analysis we are able to prove a two-term formula for the sum of eigenvalues with the leading (Weyl) term given by the volume and the subleading term by the surface area. Our result is valid under very weak assumptions on the regularity of the boundary.
引用
收藏
页码:1 / 37
页数:37
相关论文
共 22 条
[1]   Trace estimates for stable processes [J].
Banuelos, Rodrigo ;
Kulczycki, Tadeusz .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 142 (3-4) :313-338
[2]   On the trace of symmetric stable processes on Lipschitz domains [J].
Banuelos, Rodrigo ;
Kulczycki, Tadeusz ;
Siudeja, Bartlomiej .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (10) :3329-3352
[3]  
Berezin FA, 1972, IZVEZ AKAD NAUK SS M, V36, P1134
[4]  
Blumenthal RM., 1959, Pac. J. Math, V9, P399
[5]   Two-sided eigenvalue estimates for subordinate processes in domains [J].
Chen, ZQ ;
Song, RM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) :90-113
[6]  
Donoghue W.F., 1974, Die Grundlehren der mathematischen Wissenschaften, V207
[7]  
Frank RL, 2011, MATHEMATICAL RESULTS IN QUANTUM PHYSICS, P138
[8]   OPERATOR-INEQUALITY [J].
HANSEN, F .
MATHEMATISCHE ANNALEN, 1980, 246 (03) :249-250
[9]  
Hormander L., 1985, ANAL LINEAR PARTIAL, VIV
[10]  
Ivrii V. J., 1980, SOV MATH DOKL, V20, P1300