Weighted Markov-type inequalities, norms of Volterra operators, and zeros of Bessel functions

被引:14
|
作者
Boettcher, Albrecht [1 ]
Doerfler, Peter [2 ]
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Montanuniv Leoban, Dept Math & Informat Technol, A-8700 Leoben, Austria
关键词
Markov-type inequality; orthogonal polynomials; Volterra integral operators; Bessel function; singular values; CAUCHY TRANSFORM; DIFFERENTIATED EXPANSIONS; HALF-LINE; POLYNOMIALS; DERIVATIVES; COEFFICIENTS; EIGENVALUES; CONSTANTS; POWERS; L-2;
D O I
10.1002/mana.200810274
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first term of the asymptotics of the best constants in Markov-type inequalities for higher derivatives of polynomials is determined in the two cases where the underlying norm is the L(2) norm with Laguerre weight or the L(2) norm with Gegenbauer weight. The coefficient in this term is shown to be the norm of a certain Volterra integral operator which depends on the weight and the order of the derivative. For first order derivatives, the norms of the Volterra operators are expressed in terms of the zeros of Bessel functions. The asymptotic behavior of the coefficients is studied and tight bounds for them are given. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:40 / 57
页数:18
相关论文
共 50 条
  • [1] Markov-type inequalities for polynomials with restricted zeros
    Halász, G
    JOURNAL OF APPROXIMATION THEORY, 1999, 101 (01) : 148 - 155
  • [2] Markov-type inequalities and extreme zeros of orthogonal polynomials
    Nikolov, Geno
    Shadrin, Alexei
    JOURNAL OF APPROXIMATION THEORY, 2021, 271
  • [3] Weighted Sobolev spaces: Markov-type inequalities and duality
    Marcellan, Francisco
    Quintana, Yamilet
    Rodriguez, Jose M.
    BULLETIN OF MATHEMATICAL SCIENCES, 2018, 8 (02) : 233 - 256
  • [4] Bernstein- and Markov-type inequalities for rational functions
    Kalmykov, Sergei
    Nagy, Bela
    Totik, Vilmos
    ACTA MATHEMATICA, 2017, 219 (01) : 21 - 63
  • [5] Markov-type inequalities for rational functions on several intervals
    Akturk, Mehmet Ali
    Lukashov, Alexey
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 : 208 - 210
  • [6] INEQUALITIES FOR ZEROS OF BESSEL FUNCTIONS
    MCCANN, RC
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (01) : 166 - 170
  • [7] Sharp Markov-type inequalities for rational functions on several intervals
    Akturk, M. A.
    Lukashov, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 1017 - 1022
  • [8] On the best constants in Markov-type inequalities involving Laguerre norms with different weights
    Albrecht Böttcher
    Peter Dörfler
    Monatshefte für Mathematik, 2010, 161 : 357 - 367
  • [9] On the best constants in Markov-type inequalities involving Laguerre norms with different weights
    Boettcher, Albrecht
    Doerfler, Peter
    MONATSHEFTE FUR MATHEMATIK, 2010, 161 (04): : 357 - 367
  • [10] ON THE BEST CONSTANTS IN MARKOV-TYPE INEQUALITIES INVOLVING GEGENBAUER NORMS WITH DIFFERENT WEIGHTS
    Boettcher, Albrecht
    Doerfler, Peter
    OPERATORS AND MATRICES, 2011, 5 (02): : 261 - 272