Surface Finish Monitoring in Taper Turning CNC Using Artificial Neural Network and Multiple Regression Methods

被引:14
作者
Garcia-Plaza, E. [1 ]
Nunez, P. J. [1 ]
Salgado, D. R. [2 ]
Cambero, I. [2 ]
Herrera Olivenza, J. M. [2 ]
Garcia Sanz-Calcedo, J. [2 ]
机构
[1] Univ Castilla La Mancha, Tech Sch Ind Engn, Dept Appl Mech & Engn Projects, Avda Camilo Jose Cela S-N, Ciudad Real 13071, Spain
[2] Univ Extremadura, Dept Mech Energet & Mat Engn, E-06071 Badajoz, Spain
来源
MANUFACTURING ENGINEERING SOCIETY INTERNATIONAL CONFERENCE, (MESIC 2013) | 2013年 / 63卷
关键词
Monitoring; turning CNC; surface finish; artificial neural networks; regression model; CUTTING PARAMETERS; ROUGHNESS; PREDICTION;
D O I
10.1016/j.proeng.2013.08.245
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On-line monitoring systems eliminate the need for post-process evaluation, reduce production time and costs, and enhance automation of the process. The cutting forces, mechanical vibration and emission acoustic signals obtained using dynamometer, accelerometer, and acoustic emission sensors respectively have been extensively used to monitor several aspects of the cutting processes in automated machining operations. Notwithstanding, determining the optimum selection of on-line signals is crucial to enhancing system optimization requiring a low computational load yet effective prediction of cutting process parameters. This study assess the contribution of three types of signals for the on-line monitoring and diagnosis of the surface finish (Ra) in automated taper turning operations. Systems design were based on predictive models obtained from regression analysis and artificial neural networks, involving numerical parameters that characterize cutting force signals (F-x, F-y, F-z), mechanical vibration (a(x), a(y), a(z)), and acoustic emission (EA(RMS)). (C) 2013 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:599 / 607
页数:9
相关论文
共 50 条
[31]   Lake level dynamics exploration using deep learning, artificial neural network, and multiple linear regression techniques [J].
Wen, Jinfeng ;
Han, Peng-Fei ;
Zhou, Zhangbing ;
Wang, Xu-Sheng .
ENVIRONMENTAL EARTH SCIENCES, 2019, 78 (06)
[32]   Hand Posture and Force Estimation Using Surface Electromyography and an Artificial Neural Network [J].
Wang, Mengcheng ;
Zhao, Chuan ;
Barr, Alan ;
Fan, Hao ;
Yu, Suihuai ;
Kapellusch, Jay ;
Harris Adamson, Carisa .
HUMAN FACTORS, 2023, 65 (03) :382-402
[33]   OPTIMIZATION OF CNC OPERATING PARAMETERS TO MINIMIZE SURFACE ROUGHNESS OF Pinus sylvestris USING INTEGRATED ARTIFICIAL NEURAL NETWORK AND GENETIC ALGORITHM [J].
Gurgen, Aysenur ;
Cakmak, Ali ;
Yildiz, Sibel ;
Malkocoglu, Abdulkadir .
MADERAS-CIENCIA Y TECNOLOGIA, 2022, 24 :1-12
[34]   Estimating of cutting force and surface roughness in turning of GFRP composites with different orientation angles using artificial neural network [J].
Yardimeden, Ahmet .
REVIEWS ON ADVANCED MATERIALS SCIENCE, 2022, 61 (01) :955-968
[35]   Prediction of stress responses in goats: comparison of artificial neural network and multiple regression models [J].
Kannan, G. ;
Gosukonda, R. ;
Mahapatra, A. K. .
CANADIAN JOURNAL OF ANIMAL SCIENCE, 2020, 100 (01) :102-110
[36]   Modelling, prediction and analysis of surface roughness in turning process with carbide tool when cutting steel C38 using artificial neural network [J].
Boukezzi F. ;
Noureddine R. ;
Benamar A. ;
Noureddine F. .
Boukezzi, Farid (f_boukezzi@yahoo.com), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (26) :567-583
[37]   Modeling Blanking Process Using Multiple Regression Analysis and Artificial Neural Networks [J].
Emad S. Al-Momani ;
Ahmad T. Mayyas ;
Ibrahim Rawabdeh ;
Rajaa Alqudah .
Journal of Materials Engineering and Performance, 2012, 21 :1611-1619
[38]   Tool life prognostics in CNC turning of AISI 4140 steel using neural network based on computer vision [J].
Bagga, Prashant J. ;
Makhesana, Mayur A. ;
Darji, Pranav P. ;
Patel, Kaushik M. ;
Pimenov, Danil Yu ;
Giasin, Khaled ;
Khanna, Navneet .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 123 (9-10) :3553-3570
[39]   Performance Prediction of Diamond Sawblades Using Artificial Neural Network and Regression Analysis [J].
Aydin, Gokhan ;
Karakurt, Izzet ;
Hamzacebi, Coskun .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (07) :2003-2012
[40]   Performance Prediction of Diamond Sawblades Using Artificial Neural Network and Regression Analysis [J].
Gokhan Aydin ;
Izzet Karakurt ;
Coskun Hamzacebi .
Arabian Journal for Science and Engineering, 2015, 40 :2003-2012