Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor

被引:275
作者
Schmitt, Simon [1 ]
Gefen, Tuvia [2 ]
Stuerner, Felix M. [1 ]
Unden, Thomas [1 ]
Wolff, Gerhard [1 ]
Mueller, Christoph [1 ]
Scheuer, Jochen [1 ,3 ]
Naydenov, Boris [1 ,3 ]
Markham, Matthew [4 ]
Pezzagna, Sebastien [5 ]
Meijer, Jan [5 ]
Schwarz, Ilai [3 ,6 ]
Plenio, Martin B. [3 ,6 ]
Retzker, Alex [2 ]
McGuinness, Liam P. [1 ]
Jelezko, Fedor [1 ,3 ]
机构
[1] Ulm Univ, Inst Quantum Opt, D-89081 Ulm, Germany
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[3] Ulm Univ, Ctr Integrated Quantum Sci & Technol IQST, D-89081 Ulm, Germany
[4] Element Six, Harwell Campus,Fermi Ave, Didcot OX11 0QR, Oxon, England
[5] Univ Leipzig, Felix Bloch Inst Solid State Phys, D-04103 Leipzig, Germany
[6] Ulm Univ, Inst Theoret Phys, D-89069 Ulm, Germany
基金
以色列科学基金会; 欧洲研究理事会;
关键词
SPIN; RESONANCE; TIME;
D O I
10.1126/science.aam5532
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.
引用
收藏
页码:832 / 836
页数:5
相关论文
共 32 条
  • [1] Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications
    Acosta, V. M.
    Bauch, E.
    Ledbetter, M. P.
    Santori, C.
    Fu, K. -M. C.
    Barclay, P. E.
    Beausoleil, R. G.
    Linget, H.
    Roch, J. F.
    Treussart, F.
    Chemerisov, S.
    Gawlik, W.
    Budker, D.
    [J]. PHYSICAL REVIEW B, 2009, 80 (11):
  • [2] [Anonymous], 1993, ESIMATION THEORY
  • [3] Nanoscale imaging magnetometry with diamond spins under ambient conditions
    Balasubramanian, Gopalakrishnan
    Chan, I. Y.
    Kolesov, Roman
    Al-Hmoud, Mohannad
    Tisler, Julia
    Shin, Chang
    Kim, Changdong
    Wojcik, Aleksander
    Hemmer, Philip R.
    Krueger, Anke
    Hanke, Tobias
    Leitenstorfer, Alfred
    Bratschitsch, Rudolf
    Jelezko, Fedor
    Wrachtrup, Joerg
    [J]. NATURE, 2008, 455 (7213) : 648 - U46
  • [4] Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
  • [5] Bonato C, 2016, NAT NANOTECHNOL, V11, P247, DOI [10.1038/NNANO.2015.261, 10.1038/nnano.2015.261]
  • [6] Generalized uncertainty relations: Theory, examples, and Lorentz invariance
    Braunstein, SL
    Caves, CM
    Milburn, GJ
    [J]. ANNALS OF PHYSICS, 1996, 247 (01) : 135 - 173
  • [7] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [8] Gefen T., 2017, ARXIV170207408
  • [9] Quantum-enhanced measurements: Beating the standard quantum limit
    Giovannetti, V
    Lloyd, S
    Maccone, L
    [J]. SCIENCE, 2004, 306 (5700) : 1330 - 1336
  • [10] Helstrom C. W., 1969, Journal of Statistical Physics, V1, P231, DOI 10.1007/BF01007479