Functionalizing graphene oxide framework membranes with sulfonic acid groups for superior aqueous mixture separation

被引:62
作者
Yang, Guang [1 ,2 ]
Xie, Zongli [2 ]
Cran, Marlene [1 ]
Ng, Derrick [2 ]
Easton, Christopher D. [2 ]
Ding, Mingmei [3 ]
Xu, Hang [3 ]
Gray, Stephen [1 ]
机构
[1] Victoria Univ, Inst Sustainable Ind & Liveable Cities, POB 14428, Melbourne, Vic 8001, Australia
[2] CSIRO Mfg, Private Bag 10, Clayton, Vic 3169, Australia
[3] Hohai Univ, Coll Environm Sci, 1 Xikang Rd, Nanjing 2100, Jiangsu, Peoples R China
关键词
BLOCK-COPOLYMER MEMBRANES; NANOSHEET MEMBRANES; WATER-PURIFICATION; PERVAPORATION; TRANSPORT; DESALINATION; DEHYDRATION; PERFORMANCE; PERMEATION; STABILITY;
D O I
10.1039/c9ta04031e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrophilic pervaporation (PV) membranes with ultrahigh throughput and outstanding separation ability are highly beneficial for efficient separation of aqueous mixtures. However, it is still challenging to obtain high selectivity without compromising water permeation flux for state-of-the-art PV membranes. Herein, a sulfosuccinic acid (SSA) covalently linked graphene oxide (GO) membrane is developed via a facile vacuum filtration process on a nylon substrate followed by heat treatment. During the membrane fabrication process, ester groups form through the dehydration condensation reaction between -COOH from the SSA and -OH from the GO. The resultant graphene oxide framework (GOF), with well-defined two dimensional nanocapillaries functionalised by unreacted -SO3H, features enhanced hydrophilicity and remarkable swelling resistance, leading to excellent separation performance with ultrahigh water permeation fluxes and precise molecular sieving properties towards both dehydration of alcohol and desalination. This research provides a strategy to dramatically enhance the performance by adding unreacted, additional functional groups into the GOF membranes.
引用
收藏
页码:19682 / 19690
页数:9
相关论文
共 51 条
[1]  
Abraham J, 2017, NAT NANOTECHNOL, V12, P546, DOI [10.1038/NNANO.2017.21, 10.1038/nnano.2017.21]
[2]   A microporous metal-organic framework with high stability for GC separation of alcohols from water [J].
Borjigin, Tsolmon ;
Sun, Fuxing ;
Zhang, Jinlei ;
Cai, Kun ;
Ren, Hao ;
Zhu, Guangshan .
CHEMICAL COMMUNICATIONS, 2012, 48 (61) :7613-7615
[3]   Graphite oxide:: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids [J].
Bourlinos, AB ;
Gournis, D ;
Petridis, D ;
Szabó, T ;
Szeri, A ;
Dékány, I .
LANGMUIR, 2003, 19 (15) :6050-6055
[4]  
Bruggen B.V.a., 1999, J MEMBRANE SCI, V156, P29
[5]   Membranes for the dehydration of solvents by pervaporation [J].
Chapman, Peter D. ;
Oliveira, Teresa ;
Livingston, Andrew G. ;
Li, K. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 318 (1-2) :5-37
[6]   Robust construction of a graphene oxide barrier layer on a nanofibrous substrate assisted by the flexible poly(vinylalcohol) for efficient pervaporation desalination [J].
Cheng, Cheng ;
Shen, Lingdi ;
Yu, Xufeng ;
Yang, Yin ;
Wang, Xuefen .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) :3558-3568
[7]   Hybrid membranes for pervaporation separations [J].
Cheng, Xuanxuan ;
Pan, Fusheng ;
Wang, Manru ;
Li, Weidong ;
Song, Yimeng ;
Liu, Guanhua ;
Yang, Hao ;
Gao, Boxin ;
Wu, Hong ;
Jiang, Zhongyi .
JOURNAL OF MEMBRANE SCIENCE, 2017, 541 :329-346
[8]   Water transport through graphene oxide membranes: the roles of driving forces [J].
Chong, J. Y. ;
Wang, B. ;
Li, K. .
CHEMICAL COMMUNICATIONS, 2018, 54 (20) :2554-2557
[9]   Graphene oxide-polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis [J].
Cseri, Levente ;
Baugh, Joseph ;
Alabi, Adetunji ;
AlHajaj, Ahmed ;
Zou, Linda ;
Dryfe, Robert A. W. ;
Budd, Peter M. ;
Szekely, Gyorgy .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (48) :24728-24739
[10]   2D nanostructures for water purification: graphene and beyond [J].
Dervin, Saoirse ;
Dionysiou, Dionysios D. ;
Pillai, Suresh C. .
NANOSCALE, 2016, 8 (33) :15115-15131