Decimation flows in constraint satisfaction problems

被引:0
作者
Higuchi, Saburo [1 ,2 ,3 ]
Mezard, Marc [1 ,2 ]
机构
[1] CNRS, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[2] Univ Paris 11, F-91405 Orsay, France
[3] Ryukoku Univ, Dept Appl Math & Informat, Shiga 5202194, Japan
关键词
disordered systems (theory); heuristics; message-passing algorithms; RENORMALIZATION; INFERENCE;
D O I
10.1088/1742-5468/2009/12/P12009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study hard constraint satisfaction problems with a decimation approach based on message passing algorithms. Decimation induces a renormalization flow in the space of problems, and we exploit the fact that this flow transforms some of the constraints into linear constraints over GF(2). In particular, when the flow hits the subspace of linear problems, one can stop the decimation and use Gaussian elimination. We introduce a new decimation algorithm which uses this linear structure and shows a strongly improved performance with respect to the usual decimation methods for some of the hardest locked occupation problems.
引用
收藏
页数:15
相关论文
共 33 条
[1]   Circumspect descent prevails in solving random constraint satisfaction problems [J].
Alava, Mikko ;
Ardelius, John ;
Aurell, Erik ;
Kaski, Petteri ;
Krishnamurthy, Supriya ;
Orponen, Pekka ;
Seitz, Sakari .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (40) :15253-15257
[2]  
[Anonymous], 2006, COMPUTATIONAL COMPLE
[3]   Polynomial iterative algorithms for coloring and analyzing random graphs [J].
Braunstein, A ;
Mulet, R ;
Pagnani, A ;
Weigt, M ;
Zecchina, R .
PHYSICAL REVIEW E, 2003, 68 (03) :15
[4]   Survey propagation:: An algorithm for satisfiability [J].
Braunstein, A ;
Mézard, M ;
Zecchina, R .
RANDOM STRUCTURES & ALGORITHMS, 2005, 27 (02) :201-226
[5]   Survey-propagation decimation through distributed local computations -: art. no. P11016 [J].
Chavas, J ;
Furtlehner, C ;
Mézard, M ;
Zecchina, R .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :300-325
[6]  
Cook S. A., 1997, Satisfiability Problem: Theory and Applications. DIMACS Workshop, P1
[7]  
Cook S. A., 1971, P 3 ANN ACM S THEOR, P151, DOI [10.1145/800157.805047, DOI 10.1145/800157.805047]
[8]   Renormalization group approach to satisfiability [J].
Coppersmith, S. N. .
EPL, 2007, 77 (03)
[9]   A COMPUTING PROCEDURE FOR QUANTIFICATION THEORY [J].
DAVIS, M ;
PUTNAM, H .
JOURNAL OF THE ACM, 1960, 7 (03) :201-215
[10]   A MACHINE PROGRAM FOR THEOREM-PROVING [J].
DAVIS, M ;
LOGEMANN, G ;
LOVELAND, D .
COMMUNICATIONS OF THE ACM, 1962, 5 (07) :394-397