Hunt for light primordial black hole dark matter with ultrahigh-frequency gravitational waves

被引:60
作者
Franciolini, Gabriele [1 ,2 ]
Maharana, Anshuman [3 ]
Muia, Francesco [4 ]
机构
[1] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] INFN Sezione Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[3] ACI Homi Bhabha Natl Inst, Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
[4] DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
PERTURBATIONS; CONSTRAINTS; COLLAPSE; FIELD; EVOLUTION; INFLATION; RADIATION; RESONANCE; EMISSION; CLUSTERS;
D O I
10.1103/PhysRevD.106.103520
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Light primordial black holes may comprise a dominant fraction of the dark matter in our Universe. This paper critically assesses whether planned and future gravitational wave detectors in the ultrahigh-frequency band could constrain the fraction of dark matter composed of subsolar primordial black holes. Adopting the state-of-the-art description of primordial black hole merger rates, we compare various signals with currently operating and planned detectors. As already noted in the literature, our findings confirm that detecting individual primordial black hole mergers with currently existing and operating proposals remains difficult. Current proposals involving gravitational wave to electromagnetic wave conversion in a static magnetic field and microwave cavities feature a technology gap with respect to the loudest gravitational wave signals from primordial black holes of various orders of magnitude. However, we point out that one recent proposal involving resonant LC circuits represents the best option in terms of individual merger detection prospects in the range (1 - 100) MHz. In the same frequency range, we note that alternative setups involving resonant cavities, whose concept is currently under development, might represent a promising technology to detect individual merger events. We also show that a detection of the stochastic gravitational wave background produced by unresolved binaries is possible only if the theoretical sensitivity of the proposed Gaussian beam detector is achieved. Such a detector, whose feasibility is subject to various caveats, may be able to rule out some scenarios for asteroidal mass primordial black hole dark matter. We conclude that pursuing dedicated studies and developments of gravitational wave detectors in the ultrahigh-frequency band remains motivated and may lead to novel probes on the existence of light primordial black holes.
引用
收藏
页数:30
相关论文
共 315 条
[1]   Advanced LIGO [J].
Aasi, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. ;
Abernathy, M. R. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. ;
Affeldt, C. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Ain, A. ;
Ajith, P. ;
Alemic, A. ;
Allen, B. ;
Amariutei, D. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. ;
Areeda, J. S. ;
Ashton, G. ;
Ast, S. ;
Aston, S. M. ;
Aufmuth, P. ;
Aulbert, C. ;
Aylott, B. E. ;
Babak, S. ;
Baker, P. T. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barbet, M. ;
Barclay, S. ;
Barish, B. C. ;
Barker, D. ;
Barr, B. ;
Barsotti, L. ;
Bartlett, J. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Batch, J. C. ;
Baune, C. ;
Behnke, B. ;
Bell, A. S. ;
Bell, C. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
[2]   Advanced Virgo: a second-generation interferometric gravitational wave detector [J].
Acernese, F. ;
Agathos, M. ;
Agatsuma, K. ;
Aisa, D. ;
Allemandou, N. ;
Allocca, A. ;
Amarni, J. ;
Astone, P. ;
Balestri, G. ;
Ballardin, G. ;
Barone, F. ;
Baronick, J-P ;
Barsuglia, M. ;
Basti, A. ;
Basti, F. ;
Bauer, Th S. ;
Bavigadda, V. ;
Bejger, M. ;
Beker, M. G. ;
Belczynski, C. ;
Bersanetti, D. ;
Bertolini, A. ;
Bitossi, M. ;
Bizouard, M. A. ;
Bloemen, S. ;
Blom, M. ;
Boer, M. ;
Bogaert, G. ;
Bondi, D. ;
Bondu, F. ;
Bonelli, L. ;
Bonnand, R. ;
Boschi, V. ;
Bosi, L. ;
Bouedo, T. ;
Bradaschia, C. ;
Branchesi, M. ;
Briant, T. ;
Brillet, A. ;
Brisson, V. ;
Bulik, T. ;
Bulten, H. J. ;
Buskulic, D. ;
Buy, C. ;
Cagnoli, G. ;
Calloni, E. ;
Campeggi, C. ;
Canuel, B. ;
Carbognani, F. ;
Cavalier, F. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
[3]   Gauge-invariant second-order perturbations and non-Gaussianity from inflation [J].
Acquaviva, V ;
Bartolo, N ;
Matarrese, S ;
Riotto, A .
NUCLEAR PHYSICS B, 2003, 667 (1-2) :119-148
[4]   WIMPs and stellar-mass primordial black holes are incompatible [J].
Adamek, Julian ;
Byrnes, Christian T. ;
Gosenca, Mateja ;
Hotchkiss, Shaun .
PHYSICAL REVIEW D, 2019, 100 (02)
[5]  
Aggarwal N., ARXIV201013157
[6]   Searching for New Physics with a Levitated-Sensor-Based Gravitational-Wave Detector [J].
Aggarwal, Nancy ;
Winstone, George P. ;
Teo, Mae ;
Baryakhtar, Masha ;
Larson, Shane L. ;
Kalogera, Vicky ;
Geraci, Andrew A. .
PHYSICAL REVIEW LETTERS, 2022, 128 (11)
[7]   Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies [J].
Aggarwal, Nancy ;
Aguiar, Odylio D. ;
Bauswein, Andreas ;
Cella, Giancarlo ;
Clesse, Sebastian ;
Cruise, Adrian Michael ;
Domcke, Valerie ;
Figueroa, Daniel G. ;
Geraci, Andrew ;
Goryachev, Maxim ;
Grote, Hartmut ;
Hindmarsh, Mark ;
Muia, Francesco ;
Mukund, Nikhil ;
Ottaway, David ;
Peloso, Marco ;
Quevedo, Fernando ;
Ricciardone, Angelo ;
Steinlechner, Jessica ;
Steinlechner, Sebastian ;
Sun, Sichun ;
Tobar, Michael E. ;
Torrenti, Francisco ;
Unal, Caner ;
White, Graham .
LIVING REVIEWS IN RELATIVITY, 2021, 24 (01)
[8]   Past, present and future of the Resonant-Mass gravitational wave detectors [J].
Aguiar, Odylio Denys .
RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2011, 11 (01) :1-42
[9]   Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Nonprecessing Spins [J].
Ajith, P. ;
Hannam, M. ;
Husa, S. ;
Chen, Y. ;
Bruegmann, B. ;
Dorband, N. ;
Mueller, D. ;
Ohme, F. ;
Pollney, D. ;
Reisswig, C. ;
Santamaria, L. ;
Seiler, J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (24)
[10]   Planck 2018 results: X. Constraints on inflation [J].
Akrami, Y. ;
Arroja, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Donzelli, S. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fergusson, J. .
ASTRONOMY & ASTROPHYSICS, 2020, 641