Shrinkage Priors for Nonparametric Bayesian Prediction of Nonhomogeneous Poisson Processes

被引:0
作者
Komaki, Fumiyasu [1 ,2 ,3 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo 1138656, Japan
[2] RIKEN, Ctr Brain Sci, Wako, Saitama 3510198, Japan
[3] Univ Tokyo, Int Res Ctr Neurointelligence IRCN, Tokyo 1130033, Japan
基金
日本科学技术振兴机构;
关键词
Admissibility; Dirichlet process; gamma process; kernel mixture; predictive density;
D O I
10.1109/TIT.2021.3084062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider nonparametric Bayesian estimation and prediction for nonhomogeneous Poisson process models with unknown intensity functions. We propose a class of improper priors for intensity functions. Nonparametric Bayesian inference with kernel mixture based on the class improper priors is shown to be useful, although improper priors have not been widely used for nonparametric Bayes problems. Several theorems corresponding to those for finite-dimensional independent Poisson models hold for nonhomogeneous Poisson process models with infinite-dimensional parameter spaces. Bayesian estimation and prediction based on the improper priors are shown to be admissible under the Kullback-Leibler loss. Numerical methods for Bayesian inference based on the priors are investigated.
引用
收藏
页码:5305 / 5317
页数:13
相关论文
共 34 条
  • [1] Aitchison J., 1975, STAT PREDICTION ANAL
  • [2] [Anonymous], 2003, BAYESIAN NONPARAMETR
  • [3] [Anonymous], 1995, Springer series in statistics
  • [4] MINIMUM COMPLEXITY DENSITY-ESTIMATION
    BARRON, AR
    COVER, TM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) : 1034 - 1054
  • [5] Barron AR, 1999, BAYESIAN STATISTICS 6, P27
  • [6] SOME NONPARAMETRIC TECHNIQUES FOR ESTIMATING THE INTENSITY FUNCTION OF A CANCER RELATED NONSTATIONARY POISSON-PROCESS
    BARTOSZYNSKI, R
    BROWN, BW
    MCBRIDE, CM
    THOMPSON, JR
    [J]. ANNALS OF STATISTICS, 1981, 9 (05) : 1050 - 1060
  • [7] Berger J.O., 1985, STAT DECISION THEORY
  • [8] Brown L.D., 1982, InStatistical Decision Theory and Related Topics III, V1, P205
  • [9] Admissible predictive density estimation
    Brown, Lawrence D.
    George, Edward I.
    Xu, Xinyi
    [J]. ANNALS OF STATISTICS, 2008, 36 (03) : 1156 - 1170
  • [10] Daley D.J., 2003, INTRO THEORY POINT P, P211