Malware Detection on Android Smartphones using API Class and Machine Learning

被引:0
作者
Westyarian [1 ]
Rosmansyah, Yusep [1 ]
Dabarsyah, Budiman [1 ]
机构
[1] Inst Teknol Bandung, Sch Elect Engn & Informat, Dept Elect Engn, Jl Ganeca 10, Bandung 40132, Indonesia
来源
5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS 2015 | 2015年
关键词
Android; Malware detection; APIs class; Machine Learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a (new) method to detect malware in Android smartphones using API (application programming interface) classes. We use machine learning to classify whether an application is benign or malware. Furthermore, we compare classification precision rate from machine learning. This research uses 51 APIs package classes from 16 APIs classes and employs cross validation and percentage split test to classify benign and malware using Random Forest, J48, and Support Vector Machine algorithms. We use 412 total application samples (205 benign, 207 malware). We obtain that the classification precision average is 91.9%.
引用
收藏
页码:294 / 297
页数:4
相关论文
共 50 条
  • [41] Analysis and Classification of Android Malware using Machine Learning Algorithms
    Tarar, Neha
    Sharma, Shweta
    Krishna, C. Rama
    PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), 2018, : 738 - 743
  • [42] Android malware detection applying feature selection techniques and machine learning
    Mohammad Reza Keyvanpour
    Mehrnoush Barani Shirzad
    Farideh Heydarian
    Multimedia Tools and Applications, 2023, 82 : 9517 - 9531
  • [43] Malware Detection in Android Systems with Traditional Machine Learning Models: A Survey
    Bayazit, Esra Calik
    Sahingoz, Ozgur Koray
    Dogan, Buket
    2ND INTERNATIONAL CONGRESS ON HUMAN-COMPUTER INTERACTION, OPTIMIZATION AND ROBOTIC APPLICATIONS (HORA 2020), 2020, : 374 - 381
  • [44] Android malware detection through machine learning on kernel task structures
    Wang, Xinning
    Li, Chong
    NEUROCOMPUTING, 2021, 435 : 126 - 150
  • [45] ANALYSIS OF FEATURES SELECTION AND MACHINE LEARNING CLASSIFIER IN ANDROID MALWARE DETECTION
    Mas'ud, Mohd Zaki
    Sahib, Shahrin
    Abdollah, Mohd Faizal
    Selamat, Siti Rahayu
    Yusof, Robiah
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA), 2014,
  • [46] Detection of Android Malware Using Machine Learning and Siamese Shot Learning Technique for Security
    Almarshad, Fahdah A.
    Zakariah, Mohammed
    Gashgari, Ghada Abdalaziz
    Aldakheel, Eman Abdullah
    Alzahrani, Abdullah I. A.
    IEEE ACCESS, 2023, 11 : 127697 - 127714
  • [47] Android malware detection applying feature selection techniques and machine learning
    Keyvanpour, Mohammad Reza
    Shirzad, Mehrnoush Barani
    Heydarian, Farideh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (06) : 9517 - 9531
  • [48] An in-depth review of machine learning based Android malware detection
    Muzaffar, Ali
    Hassen, Hani Ragab
    Lones, Michael A.
    Zantout, Hind
    COMPUTERS & SECURITY, 2022, 121
  • [49] An Ensemble Approach Based on Fuzzy Logic Using Machine Learning Classifiers for Android Malware Detection
    Atacak, Ismail
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [50] MLDroid-framework for Android malware detection using machine learning techniques
    Mahindru, Arvind
    Sangal, A. L.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10) : 5183 - 5240