Malware Detection on Android Smartphones using API Class and Machine Learning

被引:0
作者
Westyarian [1 ]
Rosmansyah, Yusep [1 ]
Dabarsyah, Budiman [1 ]
机构
[1] Inst Teknol Bandung, Sch Elect Engn & Informat, Dept Elect Engn, Jl Ganeca 10, Bandung 40132, Indonesia
来源
5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS 2015 | 2015年
关键词
Android; Malware detection; APIs class; Machine Learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a (new) method to detect malware in Android smartphones using API (application programming interface) classes. We use machine learning to classify whether an application is benign or malware. Furthermore, we compare classification precision rate from machine learning. This research uses 51 APIs package classes from 16 APIs classes and employs cross validation and percentage split test to classify benign and malware using Random Forest, J48, and Support Vector Machine algorithms. We use 412 total application samples (205 benign, 207 malware). We obtain that the classification precision average is 91.9%.
引用
收藏
页码:294 / 297
页数:4
相关论文
共 50 条
  • [31] On the Impact of Sample Duplication in Machine-Learning-Based Android Malware Detection
    Zhao, Yanjie
    Li, Li
    Wang, Haoyu
    Cai, Haipeng
    Bissyande, Tegawende F.
    Klein, Jacques
    Grundy, John
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2021, 30 (03)
  • [32] Permissions-Based Detection of Android Malware Using Machine Learning
    Akbar, Fahad
    Hussain, Mehdi
    Mumtaz, Rafia
    Riaz, Qaiser
    Wahab, Ainuddin Wahid Abdul
    Jung, Ki-Hyun
    SYMMETRY-BASEL, 2022, 14 (04):
  • [33] On machine learning effectiveness for malware detection in Android OS using static analysis data
    Syrris, Vasileios
    Geneiatakis, Dimitris
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2021, 59
  • [34] Permission-Based Malware Detection System for Android Using Machine Learning Techniques
    Arslan, Recep Sinan
    Dogru, Ibrahim Alper
    Barisci, Necaattin
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2019, 29 (01) : 43 - 61
  • [35] MLDroid—framework for Android malware detection using machine learning techniques
    Arvind Mahindru
    A. L. Sangal
    Neural Computing and Applications, 2021, 33 : 5183 - 5240
  • [36] Machine learning-based malware detection on Android devices using behavioral features
    Urmila, T. S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 4659 - 4664
  • [37] Android Malware Detection Using Deep Learning Methods
    Lukas, Robert
    Kolaczek, Grzegorz
    2021 IEEE 30TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE 2021), 2021, : 119 - 124
  • [38] Towards Robust Android Malware Detection Models using Adversarial Learning
    Rathore, Hemant
    2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2021, : 424 - 425
  • [39] Analysis of Machine Learning Solutions to Detect Malware in Android
    Jamil, Qudsia
    Shah, Munam Ali
    2016 SIXTH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING TECHNOLOGY (INTECH), 2016, : 226 - 232
  • [40] Application of Machine Learning Algorithms for Android Malware Detection
    Kakavand, Mohsen
    Dabbagh, Mohammad
    Dehghantanha, Ali
    2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 32 - 36