Glaucoma risk index: Automated glaucoma detection from color fundus images

被引:237
|
作者
Bock, Ruediger [1 ,2 ]
Meier, Joerg [1 ]
Nyul, Laszlo G. [3 ]
Hornegger, Joachim [1 ,2 ]
Michelson, Georg [2 ,4 ,5 ]
机构
[1] Univ Erlangen Nurnberg, Pattern Recognit Lab, Dept Comp Sci, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Erlangen Grad Sch Adv Opt Technol SAOT, D-91058 Erlangen, Germany
[3] Univ Szeged, Dept Image Proc & Comp Graph, Szeged, Hungary
[4] Univ Erlangen Nurnberg, Dept Ophthalmol, D-91058 Erlangen, Germany
[5] Univ Erlangen Nurnberg, Interdisciplinary Ctr Ophthalm Prevent Med & Imag, D-91058 Erlangen, Germany
基金
美国国家科学基金会;
关键词
Computer aided diagnosis; Glaucoma; Optic disk; Appearance-based image analysis; Linear principal component analysis; OPTIC-NERVE HEAD; VESSEL SEGMENTATION; BLOOD-VESSELS; DISC; EXTRACTION; SIGNAL; DIAGNOSIS;
D O I
10.1016/j.media.2009.12.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Glaucoma as a neurodegeneration of the optic nerve is one of the most common causes of blindness. Because revitalization of the degenerated nerve fibers of the optic nerve is impossible early detection of the disease is essential. This can be supported by a robust and automated mass-screening. We propose a novel automated glaucoma detection system that operates on inexpensive to acquire and widely used digital color fundus images. After a glaucoma specific preprocessing, different generic feature types are compressed by an appearance-based dimension reduction technique. Subsequently, a probabilistic two-stage classification scheme combines these features types to extract the novel Glaucoma Risk Index (GRI) that shows a reasonable glaucoma detection performance. On a sample set of 575 fundus images a classification accuracy of 80% has been achieved in a 5-fold cross-validation setup. The GRI gains a competitive area under ROC (AUC) of 88% compared to the established topography-based glaucoma probability score of scanning laser tomography with AUC of 87%. The proposed color fundus image-based GRI achieves a competitive and reliable detection performance on a low-priced modality by the statistical analysis of entire images of the optic nerve head. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:471 / 481
页数:11
相关论文
共 50 条
  • [1] Automated Detection of Suspected Glaucoma in Digital Fundus Images
    Sengar, Namita
    Dutta, Malay Kishore
    Burget, Radim
    Ranjoha, Martin
    2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 749 - 752
  • [2] Automated detection of glaucoma from retinal fundus images using a variety of fundus cameras
    Gunasinghe, Hansi N.
    McKelvie, James
    Koay, Abigail
    Mayo, Michael
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 49 (08): : 911 - 911
  • [3] Automated glaucoma assessment from color fundus images using structural and texture features
    Nawaldgi, Sharanagouda
    Lalitha, Y. S.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77
  • [4] Towards a Glaucoma Risk Index Based on Simulated Hemodynamics from Fundus Images
    Ignacio Orlando, Jose
    Breda, Joao Barbosa
    van Keer, Karel
    Blaschko, Matthew B.
    Blanco, Pablo J.
    Bulant, Carlos A.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 65 - 73
  • [5] Automated glaucoma screening in retinal fundus images
    Aruchamy, Srinivasan
    Bhattacharjee, Partha
    Sanyal, Goutam
    International Journal of Multimedia and Ubiquitous Engineering, 2015, 10 (09): : 129 - 136
  • [6] Automatic Glaucoma Detection from Stereo Fundus Images
    Ong, Ee Ping
    Cheng, Jun
    Wong, Damon W. K.
    Tay, Elton L. T.
    Teo, Hwei Yee
    Loo, Rosalyn Grace
    Yip, Leonard W. L.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1540 - 1543
  • [7] Application of Stacked Sparse Autoencoder in Automated Detection of Glaucoma in Fundus Images
    Pratiher, Sawon
    Chattoraj, Subhankar
    Vishwakarma, Karan
    UNCONVENTIONAL OPTICAL IMAGING, 2018, 10677
  • [8] Automated Detection and Biomarker Identification Associated with the Structural and Functional Progression of Glaucoma on Longitudinal Color Fundus Images
    Majid, Iyad
    Mishra, Zubin
    Wang, Ziyuan Chris
    Chopra, Vikas
    Heuer, Dale
    Hu, Zhihong Jewel
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [9] Multi-task deep learning for glaucoma detection from color fundus images
    Pascal, Lucas
    Perdomo, Oscar J.
    Bost, Xavier
    Huet, Benoit
    Otalora, Sebastian
    Zuluaga, Maria A.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Multi-task deep learning for glaucoma detection from color fundus images
    Lucas Pascal
    Oscar J. Perdomo
    Xavier Bost
    Benoit Huet
    Sebastian Otálora
    Maria A. Zuluaga
    Scientific Reports, 12