Excited state engineering for efficient reverse intersystem crossing

被引:332
作者
Noda, Hiroki [1 ]
Nakanotani, Hajime [1 ,2 ,3 ]
Adachi, Chihaya [1 ,2 ,3 ]
机构
[1] Kyushu Univ, Ctr Organ Photon & Elect Res OPERA, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res, Nishi Ku, Fukuoka, Fukuoka 8190395, Japan
[3] Kyushu Univ, Japan Sci & Technol Agcy, Exploratory Res Adv Technol, Adachi Mol Exciton Engn Project,OPERA,Nishi Ku, Fukuoka, Fukuoka 8190395, Japan
基金
日本科学技术振兴机构;
关键词
ACTIVATED DELAYED FLUORESCENCE; LIGHT-EMITTING-DIODES; EXTERNAL QUANTUM EFFICIENCY; UP-CONVERSION; BENZONITRILE; MECHANISM; EMITTERS;
D O I
10.1126/sciadv.aao6910
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reverse intersystem crossing (RISC) from the triplet to singlet excited state is an attractive route to harvesting electrically generated triplet excitons as light, leading to highly efficient organic light-emitting diodes (OLEDs). An ideal electroluminescence efficiency of 100% can be achieved using RISC, but device lifetime and suppression of efficiency roll-off still need further improvement. We establish molecular design rules to enhance not only the RISC rate constant but also operational stability under electrical excitation. We show that the introduction of a second type of electron-donating unit in an initially donor-acceptor system induces effective mixing between charge transfer and locally excited triplet states, resulting in acceleration of the RISC rate while maintaining high photoluminescence quantum yield. OLEDs using our designed sky-blue emitter achieved a nearly 100% exciton production efficiency and exhibited not only low efficiency roll-off but also a marked improvement in operational stability.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Excitonic singlet-triplet ratio in a semiconducting organic thin film [J].
Baldo, MA ;
O'Brien, DF ;
Thompson, ME ;
Forrest, SR .
PHYSICAL REVIEW B, 1999, 60 (20) :14422-14428
[2]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[3]   Nature of Highly Efficient Thermally Activated Delayed Fluorescence in Organic Light-Emitting Diode Emitters: Nonadiabatic Effect between Excited States [J].
Chen, Xian-Kai ;
Zhang, Shou-Feng ;
Fan, Jian-Xun ;
Ren, Ai-Min .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (18) :9728-9733
[4]   Molecular Engineering of High Efficiency and Long Lifetime Blue Thermally Activated Delayed Fluorescent Emitters for Vacuum and Solution Processed Organic Light-Emitting Diodes [J].
Cho, Yong Joo ;
Jeon, Sang Kyu ;
Lee, Jun Yeob .
ADVANCED OPTICAL MATERIALS, 2016, 4 (05) :688-693
[5]   20% External Quantum Efficiency in Solution-Processed Blue Thermally Activated Delayed Fluorescent Devices [J].
Cho, Yong Joo ;
Chin, Byung Doo ;
Jeon, Sang Kyu ;
Lee, Jun Yeob .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (43) :6786-6792
[6]   Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts [J].
Cui, Lin-Song ;
Ruan, Shi-Bin ;
Bencheikh, Fatima ;
Nagata, Ryo ;
Zhang, Lei ;
Inada, Ko ;
Nakanotani, Hajime ;
Liao, Liang-Sheng ;
Adachi, Chihaya .
NATURE COMMUNICATIONS, 2017, 8
[7]   The Role of Local Triplet Excited States and D-A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices [J].
Dias, Fernando B. ;
Santos, Jose ;
Graves, David R. ;
Data, Przemyslaw ;
Nobuyasu, Roberto S. ;
Fox, Mark A. ;
Batsanov, Andrei S. ;
Palmeira, Tiago ;
Berberan-Santos, Mrio N. ;
Bryce, Martin R. ;
Monkman, Andrew P. .
ADVANCED SCIENCE, 2016, 3 (12)
[8]   Thermally Activated Delayed Fluorescence from Sn4+-Porphyrin Complexes and Their Application to Organic Light-Emitting Diodes - A Novel Mechanism for Electroluminescence [J].
Endo, Ayataka ;
Ogasawara, Mai ;
Takahashi, Atsushi ;
Yokoyama, Daisuke ;
Kato, Yoshimine ;
Adachi, Chihaya .
ADVANCED MATERIALS, 2009, 21 (47) :4802-+
[9]   Investigating the Role of Emissive Layer Architecture on the Exciton Recombination Zone in Organic Light-Emitting Devices [J].
Erickson, Nicholas C. ;
Holmes, Russell J. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (41) :5190-5198
[10]   Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs [J].
Furukawa, Taro ;
Nakanotani, Hajime ;
Inoue, Munetomo ;
Adachi, Chihaya .
SCIENTIFIC REPORTS, 2015, 5 :8429