On the Wiener Index of Graphs

被引:13
作者
Wu, Xiaoying [1 ]
Liu, Huiqing [1 ,2 ]
机构
[1] Hubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R China
[2] Hubei Univ, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
关键词
Graph; Wiener index; Cut-edge; TREES;
D O I
10.1007/s10440-009-9460-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index of a graph G is defined as W(G)=a (u,v) d (G) (u,v), where d (G) (u,v) is the distance between u and v in G and the sum goes over all the pairs of vertices. In this paper, we first present the 6 graphs with the first to the sixth smallest Wiener index among all graphs with n vertices and k cut edges and containing a complete subgraph of order n-k; and then we construct a graph with its Wiener index no less than some integer among all graphs with n vertices and k cut edges.
引用
收藏
页码:535 / 544
页数:10
相关论文
共 18 条
[1]  
Ashrafi AR, 2007, MATCH-COMMUN MATH CO, V57, P403
[2]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[3]  
Cai XC, 2008, MATCH-COMMUN MATH CO, V60, P95
[4]  
Deng HY, 2007, MATCH-COMMUN MATH CO, V57, P393
[5]   Wiener index of hexagonal systems [J].
Dobrynin, AA ;
Gutman, I ;
Klavzar, S ;
Zigert, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) :247-294
[6]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[7]  
GUTMAN I, 1993, INDIAN J CHEM A, V32, P651
[8]  
Gutman I., 1986, Mathematical concepts in organic chemistry, DOI 10.1515/9783112570180
[9]  
Liu HQ, 2008, MATCH-COMMUN MATH CO, V60, P85
[10]  
Liu HQ, 2007, MATCH-COMMUN MATH CO, V58, P183