Characterization of single-atom catalysts by EELS and EDX spectroscopy

被引:33
作者
Egerton, R. F. [1 ]
Watanabe, M. [2 ]
机构
[1] Univ Alberta, Phys Dept, Edmonton, AB T6G 2E1, Canada
[2] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
基金
加拿大自然科学与工程研究理事会;
关键词
STEM; Catalyst analysis; Adatom motion; Energy-dispersive X-ray spectrometry; Electron energy-loss spectroscopy; TRANSMISSION ELECTRON-MICROSCOPY; METAL ATOMS; ADSORPTION; DIFFUSION; FLUORESCENCE; YIELDS;
D O I
10.1016/j.ultramic.2018.06.013
中图分类号
TH742 [显微镜];
学科分类号
摘要
Fitted with a field emission source, aberration-corrected optics and an energy-dispersive X-ray detector of large solid angle, a modern analytical TEM can generate a current density high enough to chemically identify a single metal atom within a fraction of a second, if the atom remains stationary within the electron probe. However, atom motion will occur if the atomic binding energy is too low, the specimen temperature too high, or the electron accelerating voltage above a certain threshold. We discuss such motion in terms of thermal diffusion, beam-induced sputtering and beam-assisted surface migration. Calculations based on a Rutherford-scattering approximation suggest that when atomic displacement is possible, it drastically reduces the analytical signal and signal/noise ratio. For certain elements, electron energy-loss spectroscopy (EELS) provides a higher delectability than energy-dispersive X-ray (EDX) but suffers from the same problem of atomic displacement.
引用
收藏
页码:111 / 117
页数:7
相关论文
共 45 条
[11]   Basic questions related to electron-induced sputtering in the TEM [J].
Egerton, R. F. ;
McLeod, R. ;
Wang, F. ;
Malac, M. .
ULTRAMICROSCOPY, 2010, 110 (08) :991-997
[12]  
Egerton R.F., 2011, ELECT ENERGY LOSS SP
[13]   A REVISED EXPRESSION FOR SIGNAL NOISE RATIO IN EELS [J].
EGERTON, RF .
ULTRAMICROSCOPY, 1982, 9 (04) :387-390
[14]   Anomalous diffusion of single metal atoms on a graphene oxide support [J].
Furnival, Tom ;
Leary, Rowan K. ;
Tyo, Eric C. ;
Vajda, Stefan ;
Ramasse, Quentin M. ;
Thomas, John Meurig ;
Bristowe, Paul D. ;
Midgley, Paul A. .
CHEMICAL PHYSICS LETTERS, 2017, 683 :370-374
[15]   Electron Impact Inner-Shell Ionization of Atoms [J].
Haque, A. K. Fazlul ;
Uddin, M. Alfaz ;
Shahjahan, M. ;
Talukder, M. Rashid ;
Basak, Arun K. ;
Saha, Bidhan C. .
ADVANCES IN QUANTUM CHEMISTRY, VOL. 61, 2011, 61 :317-380
[16]   A REVIEW, BIBLIOGRAPHY, AND TABULATION OF K, L, AND HIGHER ATOMIC SHELL X-RAY-FLUORESCENCE YIELDS [J].
HUBBELL, JH ;
TREHAN, PN ;
SINGH, N ;
CHAND, B ;
MEHTA, D ;
GARG, ML ;
GARG, RR ;
SINGH, S ;
PURI, S .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1994, 23 (02) :339-364
[17]   STUDY OF ADSORPTION AND DIFFUSION OF HEAVY-ATOMS ON LIGHT-ELEMENT SUBSTRATES BY MEANS OF ATOMIC RESOLUTION STEM [J].
ISAACSON, MS ;
LANGMORE, J ;
PARKER, NW ;
KOPF, D ;
UTLAUT, M .
ULTRAMICROSCOPY, 1976, 1 (04) :359-376
[18]   DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nano tube functionalization [J].
Ishii, Akira ;
Yamamoto, Masana ;
Asano, Hiroki ;
Fujiwara, Katsutoshi .
PROCEEDINGS OF THE 17TH INTERNATIONAL VACUUM CONGRESS/13TH INTERNATIONAL CONFERENCE ON SURFACE SCIENCE/INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2008, 100
[19]   Energy of Supported Metal Catalysts: From Single Atoms to Large Metal Nanoparticles [J].
James, Trevor E. ;
Hemmingson, Stephanie L. ;
Campbell, Charles T. .
ACS CATALYSIS, 2015, 5 (10) :5673-5678
[20]  
Klie R. F., 2014, MICROSC MICROANAL, V20, P56