Characterization of single-atom catalysts by EELS and EDX spectroscopy

被引:33
作者
Egerton, R. F. [1 ]
Watanabe, M. [2 ]
机构
[1] Univ Alberta, Phys Dept, Edmonton, AB T6G 2E1, Canada
[2] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
基金
加拿大自然科学与工程研究理事会;
关键词
STEM; Catalyst analysis; Adatom motion; Energy-dispersive X-ray spectrometry; Electron energy-loss spectroscopy; TRANSMISSION ELECTRON-MICROSCOPY; METAL ATOMS; ADSORPTION; DIFFUSION; FLUORESCENCE; YIELDS;
D O I
10.1016/j.ultramic.2018.06.013
中图分类号
TH742 [显微镜];
学科分类号
摘要
Fitted with a field emission source, aberration-corrected optics and an energy-dispersive X-ray detector of large solid angle, a modern analytical TEM can generate a current density high enough to chemically identify a single metal atom within a fraction of a second, if the atom remains stationary within the electron probe. However, atom motion will occur if the atomic binding energy is too low, the specimen temperature too high, or the electron accelerating voltage above a certain threshold. We discuss such motion in terms of thermal diffusion, beam-induced sputtering and beam-assisted surface migration. Calculations based on a Rutherford-scattering approximation suggest that when atomic displacement is possible, it drastically reduces the analytical signal and signal/noise ratio. For certain elements, electron energy-loss spectroscopy (EELS) provides a higher delectability than energy-dispersive X-ray (EDX) but suffers from the same problem of atomic displacement.
引用
收藏
页码:111 / 117
页数:7
相关论文
共 45 条
[1]   Adatom surface diffusion of catalytic metals on the anatase TiO2(101) surface [J].
Alghannam, Afnan ;
Muhich, Christopher L. ;
Musgrave, Charles B. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (06) :4541-4552
[2]  
[Anonymous], 2005, XRAY DATA BOOKLET
[3]   X-RAY-FLUORESCENCE YIELDS, AUGER, AND COSTER-KRONIG TRANSITION PROBABILITIES [J].
BAMBYNEK, W ;
SWIFT, CD ;
CRASEMANN, B ;
FREND, HU ;
RAO, PV ;
PRICE, RE ;
MARK, H ;
FINK, RW .
REVIEWS OF MODERN PHYSICS, 1972, 44 (04) :716-+
[4]   Irradiation effects in carbon nanostructures [J].
Banhart, F .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (08) :1181-1221
[5]   Cross sections for ionization of K, L and M shells of atoms by impact of electrons and positrons with energies up to 1 GeV: Analytical formulas [J].
Bote, David ;
Salvat, Francesc ;
Jablonski, Aleksander ;
Powell, Cedric J. .
ATOMIC DATA AND NUCLEAR DATA TABLES, 2009, 95 (06) :871-909
[6]  
Bradley C. R., 1988, ANL-88-48
[7]   Metal adsorption and adhesion energies on MgO(100) [J].
Campbell, CT ;
Starr, DE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (31) :9212-9218
[8]   Mi (i=1-5) subshell fluorescence and Coster-Kronig yields for elements with 67≤Z≤92 [J].
Chauhan, Yogeshwar ;
Puri, Sanjiv .
ATOMIC DATA AND NUCLEAR DATA TABLES, 2008, 94 (01) :38-49
[9]   Stabilization of Single Metal Atoms on Graphitic Carbon Nitride [J].
Chen, Zupeng ;
Mitchell, Sharon ;
Vorobyeva, Evgeniya ;
Leary, Rowan K. ;
Hauert, Roland ;
Furnival, Tom ;
Ramasse, Quentin M. ;
Thomas, John M. ;
Midgley, Paul A. ;
Dontsova, Dariya ;
Antonietti, Markus ;
Pogodin, Sergey ;
Lopez, Nuria ;
Perez-Ramirez, Javier .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (08)
[10]   Beam-Induced Motion of Adatoms in the Transmission Electron Microscope [J].
Egerton, R. F. .
MICROSCOPY AND MICROANALYSIS, 2013, 19 (02) :479-486