Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement

被引:137
作者
Chang, Ken [1 ]
Beers, Andrew L. [1 ]
Bai, Harrison X. [2 ]
Brown, James M. [1 ]
Ly, K. Ina [3 ]
Li, Xuejun [4 ]
Senders, Joeky T. [5 ]
Kavouridis, Vasileios K. [5 ]
Boaro, Alessandro [5 ]
Su, Chang [6 ]
Bi, Wenya Linda [7 ]
Rapalino, Otto [8 ]
Liao, Weihua [9 ]
Shen, Qin [10 ]
Zhou, Hao [11 ]
Xiao, Bo [11 ]
Wang, Yinyan [12 ]
Zhang, Paul J. [13 ]
Pinho, Marco C. [14 ,15 ]
Wen, Patrick Y. [16 ]
Batchelor, Tracy T. [17 ]
Boxerman, Jerrold L. [18 ,19 ]
Arnaout, Omar [5 ]
Rosen, Bruce R. [1 ]
Gerstner, Elizabeth R. [3 ]
Yang, Li [20 ]
Huang, Raymond Y. [21 ]
Kalpathy-Cramer, Jayashree [1 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA USA
[2] Hosp Univ Penn, Dept Radiol, 3400 Spruce St, Philadelphia, PA 19104 USA
[3] Massachusetts Gen Hosp, Stephen E & Catherine Pappas Ctr Neurooncol, Boston, MA 02114 USA
[4] Cent South Univ, Xiangya Hosp, Dept Neurosurg, Changsha, Hunan, Peoples R China
[5] Brigham & Womens Hosp, Dept Neurosurg, Computat Neurosci Outcomes Ctr, 75 Francis St, Boston, MA 02115 USA
[6] Yale Sch Med, New Haven, CT USA
[7] Brigham & Womens Hosp, Dept Neurosurg, Ctr Skull Base & Pituitary Surg, 75 Francis St, Boston, MA 02115 USA
[8] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[9] Cent South Univ, Xiangya Hosp, Dept Radiol, Changsha, Hunan, Peoples R China
[10] Cent South Univ, Xiangya Hosp 2, Dept Radiol, Changsha, Hunan, Peoples R China
[11] Cent South Univ, Xiangya Hosp, Dept Neurol, Changsha, Hunan, Peoples R China
[12] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China
[13] Hosp Univ Penn, Dept Pathol & Lab Med, 3400 Spruce St, Philadelphia, PA 19104 USA
[14] Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
[15] Univ Texas Southwestern Med Ctr Dallas, Adv Imaging Res Ctr, Dallas, TX 75390 USA
[16] Harvard Med Sch, Dana Farber Canc Inst, Ctr Neurooncol, Boston, MA 02115 USA
[17] Brigham & Womens Hosp, Dept Neurol, 75 Francis St, Boston, MA 02115 USA
[18] Brown Univ, Rhode Isl Hosp, Dept Diagnost Imaging, Providence, RI 02903 USA
[19] Brown Univ, Alpert Med Sch, Providence, RI 02912 USA
[20] Cent South Univ, Xiangya Hosp 2, Dept Neurol, Changsha, Hunan, Peoples R China
[21] Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02445 USA
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
deep learning; glioma; longitudinal response assessment; RANO; segmentation; CONVOLUTIONAL NEURAL-NETWORK; CONTRAST-ENHANCED MRI; HIGH-GRADE GLIOMAS; RECURRENT GLIOBLASTOMA; RESPONSE ASSESSMENT; SEGMENTATION; SURVIVAL; VARIABILITY; CRITERIA; IDH;
D O I
10.1093/neuonc/noz106
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitating tumor volumes as well as the product of maximum bidimensional diameters according to the Response Assessment in Neuro-Oncology (RANO) criteria (AutoRANO). Methods. Two cohorts of patients were used for this study. One consisted of 843 preoperative MRIs from 843 patients with low- or high-grade gliomas from 4 institutions and the second consisted of 713 longitudinal post-operative MRI visits from 54 patients with newly diagnosed glioblastomas (each with 2 pretreatment "baseline" MRIs) from 1 institution. Results. The automatically generated FLAIR hyperintensity volume, contrast-enhancing tumor volume, and AutoRANO were highly repeatable for the double-baseline visits, with an intraclass correlation coefficient (ICC) of 0.986, 0.991, and 0.977, respectively, on the cohort of postoperative GBM patients. Furthermore, there was high agreement between manually and automatically measured tumor volumes, with ICC values of 0.915, 0.924, and 0.965 for preoperative FLAIR hyperintensity, postoperative FLAIR hyperintensity, and postoperative contrast-enhancing tumor volumes, respectively. Lastly, the ICCs for comparing manually and automatically derived longitudinal changes in tumor burden were 0.917, 0.966, and 0.850 for FLAIR hyperintensity volume, contrast-enhancing tumor volume, and RANO measures, respectively. Conclusions. Our automated algorithm demonstrates potential utility for evaluating tumor burden in complex posttreatment settings, although further validation in multicenter clinical trials will be needed prior to widespread implementation.
引用
收藏
页码:1412 / 1422
页数:11
相关论文
共 31 条
[1]  
Barboriak DP, 2018, RADIOLOGY
[2]   Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation [J].
Batchelor, Tracy T. ;
Gerstner, Elizabeth R. ;
Emblem, Kyrre E. ;
Duda, Dan G. ;
Kalpathy-Cramer, Jayashree ;
Snuderl, Matija ;
Ancukiewicz, Marek ;
Polaskova, Pavlina ;
Pinho, Marco C. ;
Jennings, Dominique ;
Plotkin, Scott R. ;
Chi, Andrew S. ;
Eichler, April F. ;
Dietrich, Jorg ;
Hochberg, Fred H. ;
Lu-Emerson, Christine ;
Iafrate, A. John ;
Ivy, S. Percy ;
Rosen, Bruce R. ;
Loeffler, Jay S. ;
Wen, Patrick Y. ;
Sorensen, A. Greg ;
Jain, Rakesh K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (47) :19059-19064
[3]  
BEERS A, 2018, DEEPNEURO OPEN SOURC
[4]   Sequential Neural Networks for Biologically-Informed Glioma Segmentation [J].
Beers, Andrew ;
Chang, Ken ;
Brown, James ;
Gerstner, Elizabeth ;
Rosen, Bruce ;
Kalpathy-Cramer, Jayashree .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[5]   Early post-bevacizumab progression on contrast-enhanced MRI as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 Central Reader Study [J].
Boxerman, Jerrold L. ;
Zhang, Zheng ;
Safriel, Yair ;
Larvie, Mykol ;
Snyder, Bradley S. ;
Jain, Rajan ;
Chi, T. Linda ;
Sorensen, A. Gregory ;
Gilbert, Mark R. ;
Barboriak, Daniel P. .
NEURO-ONCOLOGY, 2013, 15 (07) :945-954
[6]   Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging [J].
Chang, Ken ;
Bai, Harrison X. ;
Zhou, Hao ;
Su, Chang ;
Bi, Wenya Linda ;
Agbodza, Ena ;
Kavouridis, Vasileios K. ;
Senders, Joeky T. ;
Boaro, Alessandro ;
Beers, Andrew ;
Zhang, Biqi ;
Capellini, Alexandra ;
Liao, Weihua ;
Shen, Qin ;
Li, Xuejun ;
Xiao, Bo ;
Cryan, Jane ;
Ramkissoon, Shakti ;
Ramkissoon, Lori ;
Ligon, Keith ;
Wen, Patrick Y. ;
Bindra, Ranjit S. ;
Woo, John ;
Arnaout, Omar ;
Gerstner, Elizabeth R. ;
Zhang, Paul J. ;
Rosen, Bruce R. ;
Yang, Li ;
Huang, Raymond Y. ;
Kalpathy-Cramer, Jayashree .
CLINICAL CANCER RESEARCH, 2018, 24 (05) :1073-1081
[7]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[10]   Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study [J].
Deeley, M. A. ;
Chen, A. ;
Datteri, R. ;
Noble, J. H. ;
Cmelak, A. J. ;
Donnelly, E. F. ;
Malcolm, A. W. ;
Moretti, L. ;
Jaboin, J. ;
Niermann, K. ;
Yang, Eddy S. ;
Yu, David S. ;
Yei, F. ;
Koyama, T. ;
Ding, G. X. ;
Dawant, B. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (14) :4557-4577