Quantile regression for longitudinal data via the multivariate generalized hyperbolic distribution

被引:3
作者
Florez, Alvaro J. [1 ,2 ]
Keilegom, Ingrid Van [3 ]
Molenberghs, Geert [1 ,4 ]
Verhasselt, Anneleen [1 ]
机构
[1] Univ Hasselt, DSI, I BioStat, Hasselt, Belgium
[2] Univ Valle, Sch Stat, Cali, Colombia
[3] Katholieke Univ Leuven, ORSTAT, Naamsestr 69, B-3000 Leuven, Belgium
[4] Katholieke Univ Leuven, I BioStat, Leuven, Belgium
基金
欧洲研究理事会;
关键词
asymptotics; Longitudinal data; maximum likelihood; pseudo-likelihood; quantile regression; BOOTSTRAP INFERENCE;
D O I
10.1177/1471082X211015454
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
While extensive research has been devoted to univariate quantile regression, this is considerably less the case for the multivariate (longitudinal) version, even though there are many potential applications, such as the joint examination of growth curves for two or more growth characteristics, such as body weight and length in infants. Quantile functions are easier to interpret for a population of curves than mean functions. While the connection between multivariate quantiles and the multivariate asymmetric Laplace distribution is known, it is less well known that its use for maximum likelihood estimation poses mathematical as well as computational challenges. Therefore, we study a broader family of multivariate generalized hyperbolic distributions, of which the multivariate asymmetric Laplace distribution is a limiting case. We offer an asymptotic treatment. Simulations and a data example supplement the modelling and theoretical considerations.
引用
收藏
页码:566 / 584
页数:19
相关论文
共 40 条
[1]  
Barndorff-Nielsen O., 1981, Statistical Distributions in Scientific Work, P19
[2]   EXPONENTIALLY DECREASING DISTRIBUTIONS FOR LOGARITHM OF PARTICLE-SIZE [J].
BARNDORFFNIELSEN, O .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 353 (1674) :401-419
[3]   Quantile regression with monotonicity restrictions using P-splines and the L1-norm [J].
Bollaerts, Kaatje ;
Eilers, Paul H. C. ;
Aerts, Marc .
STATISTICAL MODELLING, 2006, 6 (03) :189-207
[4]   Interdisciplinary diabetes care teams operating on the interface between primary and specialty care are associated with improved outcomes of care: findings from the Leuven Diabetes Project [J].
Borgermans, Liesbeth ;
Goderis, Geert ;
Van Den Broeke, Carine ;
Verbeke, Geert ;
Carbonez, An ;
Ivanova, Anna ;
Mathieu, Chantal ;
Aertgeerts, Bert ;
Heyrman, Jan ;
Grol, Richard .
BMC HEALTH SERVICES RESEARCH, 2009, 9
[5]   A cluster randomized trial to improve adherence to evidence-based guidelines on diabetes and reduce clinical inertia in primary care physicians in Belgium: study protocol [NTR 1369] [J].
Borgermans, Liesbeth ;
Goderis, Geert ;
Van Den Broeke, Carine ;
Mathieu, Chantal ;
Aertgeerts, Bert ;
Verbeke, Geert ;
Carbonez, An ;
Ivanova, Anna ;
Grol, Richard ;
Heyrman, Jan .
IMPLEMENTATION SCIENCE, 2008, 3 (1)
[6]  
Chen L, 2004, LECT NOTES STAT, V179, P51
[7]   An Adapted Loss Function for Censored Quantile Regression [J].
De Backer, Mickael ;
Ghouch, Anouar El ;
Van Keilegom, Ingrid .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) :1126-1137
[8]   Quantile regression for longitudinal data based on latent Markov subject-specific parameters [J].
Farcomeni, Alessio .
STATISTICS AND COMPUTING, 2012, 22 (01) :141-152
[9]  
Fletcher R., 2013, PRACTICAL METHODS OP, DOI 10.1002/9781118723203
[10]  
Galvao A.F., 2017, Handbook of Quantile Regression, P363