Quantile regression for longitudinal data via the multivariate generalized hyperbolic distribution

被引:1
|
作者
Florez, Alvaro J. [1 ,2 ]
Keilegom, Ingrid Van [3 ]
Molenberghs, Geert [1 ,4 ]
Verhasselt, Anneleen [1 ]
机构
[1] Univ Hasselt, DSI, I BioStat, Hasselt, Belgium
[2] Univ Valle, Sch Stat, Cali, Colombia
[3] Katholieke Univ Leuven, ORSTAT, Naamsestr 69, B-3000 Leuven, Belgium
[4] Katholieke Univ Leuven, I BioStat, Leuven, Belgium
基金
欧洲研究理事会;
关键词
asymptotics; Longitudinal data; maximum likelihood; pseudo-likelihood; quantile regression; BOOTSTRAP INFERENCE;
D O I
10.1177/1471082X211015454
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
While extensive research has been devoted to univariate quantile regression, this is considerably less the case for the multivariate (longitudinal) version, even though there are many potential applications, such as the joint examination of growth curves for two or more growth characteristics, such as body weight and length in infants. Quantile functions are easier to interpret for a population of curves than mean functions. While the connection between multivariate quantiles and the multivariate asymmetric Laplace distribution is known, it is less well known that its use for maximum likelihood estimation poses mathematical as well as computational challenges. Therefore, we study a broader family of multivariate generalized hyperbolic distributions, of which the multivariate asymmetric Laplace distribution is a limiting case. We offer an asymptotic treatment. Simulations and a data example supplement the modelling and theoretical considerations.
引用
收藏
页码:566 / 584
页数:19
相关论文
共 50 条
  • [1] Quantile regression for longitudinal data
    Koenker, R
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 91 (01) : 74 - 89
  • [2] Confidence Corridors for Multivariate Generalized Quantile Regression
    Chao, Shih-Kang
    Proksch, Katharina
    Dette, Holger
    Haerdle, Wolfgang Karl
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2017, 35 (01) : 70 - 85
  • [3] Quantile regression for longitudinal data using the asymmetric Laplace distribution
    Geraci, Marco
    Bottai, Matteo
    BIOSTATISTICS, 2007, 8 (01) : 140 - 154
  • [4] A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data
    Biswas, Jayabrata
    Das, Kiranmoy
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 241 - 260
  • [5] A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data
    Jayabrata Biswas
    Kiranmoy Das
    Computational Statistics, 2021, 36 : 241 - 260
  • [6] Weighted quantile regression for longitudinal data
    Lu, Xiaoming
    Fan, Zhaozhi
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 569 - 592
  • [7] Weighted quantile regression for longitudinal data
    Xiaoming Lu
    Zhaozhi Fan
    Computational Statistics, 2015, 30 : 569 - 592
  • [8] M-quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study
    Alfo, Marco
    Marino, Maria Francesca
    Ranalli, Maria Giovanna
    Salvati, Nicola
    Tzavidis, Nikos
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2021, 70 (01) : 122 - 146
  • [9] Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data
    Fu, Liya
    Wang, You-Gan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 492 - 502
  • [10] On multivariate quantile regression
    Chakraborty, B
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 110 (1-2) : 109 - 132