Data-Driven Robust Optimization for Steam Systems in Ethylene Plants under Uncertainty

被引:12
|
作者
Zhao, Liang [1 ,2 ]
Zhong, Weimin [1 ,2 ]
Du, Wenli [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
ethylene plant; steam system; data-driven robust optimization; uncertainty; UTILITY SYSTEM; ALGORITHM; ERA;
D O I
10.3390/pr7100744
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In an ethylene plant, steam system provides shaft power to compressors and pumps and heats the process streams. Modeling and optimization of a steam system is a powerful tool to bring benefits and save energy for ethylene plants. However, the uncertainty of device efficiencies and the fluctuation of the process demands cause great difficulties to traditional mathematical programming methods, which could result in suboptimal or infeasible solution. The growing data-driven optimization approaches offer new techniques to eliminate uncertainty in the process system engineering community. A data-driven robust optimization (DDRO) methodology is proposed to deal with uncertainty in the optimization of steam system in an ethylene plant. A hybrid model of extraction-exhausting steam turbine is developed, and its coefficients are considered as uncertain parameters. A deterministic mixed integer linear programming model of the steam system is formulated based on the model of the components to minimize the operating cost of the ethylene plant. The uncertain parameter set of the proposed model is derived from the historical data, and the Dirichlet process mixture model is employed to capture the features for the construction of the uncertainty set. In combination with the derived uncertainty set, a data-driven conic quadratic mixed-integer programming model is reformulated for the optimization of the steam system under uncertainty. An actual case study is utilized to validate the performance of the proposed DDRO method.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A bilevel data-driven framework for robust optimization under uncertainty - applied to fluid catalytic cracking unit
    Li, Tianyue
    Long, Jian
    Zhao, Liang
    Du, Wenli
    Qian, Feng
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 166
  • [32] Data-driven robust operating optimization of energy-material coupled system in refineries under uncertainty
    Long, Jian
    Zhu, Jiawei
    Wang, Ning
    Zhai, Jiazi
    Xu, Tiantian
    Liang, Chen
    Zhao, Liang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [33] Data-Driven Adaptive Robust Optimization Framework for Unit Commitment under Renewable Energy Generation Uncertainty
    Ning, Chao
    You, Fengqi
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 4740 - 4745
  • [34] Ride-Sharing Matching Under Travel Time Uncertainty Through Data-Driven Robust Optimization
    Li, Xiaoming
    Gao, Jie
    Wang, Chun
    Huang, Xiao
    Nie, Yimin
    IEEE ACCESS, 2022, 10 : 116931 - 116941
  • [35] Chemical Process Scheduling under Disjunctive Uncertainty Using Data-Driven Multistage Adaptive Robust Optimization
    Ning, Chao
    You, Fengqi
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 2145 - 2150
  • [36] A data-driven robust optimization method based on scenario clustering for PVC production scheduling under uncertainty
    Wang, Yuhong
    Su, Jian
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 188
  • [37] Data-Driven Conditional Robust Optimization
    Chenreddy, Abhilash
    Bandi, Nymisha
    Delage, Erick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [38] Data-driven robust optimization for contextual vehicle rebalancing in on-demand ride services under demand uncertainty
    Guo, Zhen
    Yu, Bin
    Shan, Wenxuan
    Yao, Baozhen
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 154
  • [39] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Dai, Xin
    Zhao, Liang
    He, Renchu
    Du, Wenli
    Zhong, Weimin
    Li, Zhi
    Qian, Feng
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 69 : 152 - 166
  • [40] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Xin Dai
    Liang Zhao
    Renchu He
    Wenli Du
    Weimin Zhong
    Zhi Li
    Feng Qian
    Chinese Journal of Chemical Engineering, 2024, (05) : 152 - 166