Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

被引:84
作者
Amendt, Peter [1 ]
Cerjan, C. [1 ]
Hamza, A. [1 ]
Hinkel, D. E. [1 ]
Milovich, J. L. [1 ]
Robey, H. F. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
D O I
10.1063/1.2716406
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl , Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (approximate to 4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (approximate to 790 atm) in the inner shell, strict concentricity requirements on the two shells (< 3 mu m), development of nanoporous (< 100 nm cell size) low-density (< 100 mg/cc) metallic foams for structural support of the inner shell and hydrodynamic instability mitigation, and effective control of hydrodynamic instabilities on the high-Atwood-number interface between the DT fuel and the high-Z inner shell. Recent progress in DS ignition designs and required materials science advances at the nanoscale are described herein. Two new ignition designs that use rugby-shaped vacuum hohlraums are presented that utilize either 1 or 2 MJ of laser energy at 3 omega. The capability of the National Ignition Facility to generate the requested 2 MJ reverse-ramp pulse shape for DS ignition is expected to be comparable to the planned high-contrast (approximate to 100) pulse shape at 1.8 MJ for the baseline cryogenic target. Nanocrystalline, high-strength, Au-Cu alloy inner shells are under development using electrochemical deposition over a glass mandrel, exhibiting tensile strengths well in excess of 790 atm. Novel, low-density (85 mg/cc) copper foams have recently been demonstrated using 10 mg/cc SiO2 nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010. (C) 2007 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Bell-Plesset effects for an accelerating interface with contiguous density gradients [J].
Amendt, P .
PHYSICS OF PLASMAS, 2006, 13 (04)
[2]   Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis [J].
Amendt, P ;
Colvin, JD ;
Tipton, RE ;
Hinkel, DE ;
Edwards, MJ ;
Landen, OL ;
Ramshaw, JD ;
Suter, LJ ;
Varnum, WS ;
Watt, RG .
PHYSICS OF PLASMAS, 2002, 9 (05) :2221-2233
[3]   Hohlraum-driven ignitionlike double-shell implosions on the omega laser facility [J].
Amendt, PA ;
Robey, HF ;
Park, HS ;
Tipton, RE ;
Turner, RE ;
Milovich, JL ;
Bono, M ;
Hibbard, R ;
Louis, H ;
Wallace, R ;
Glebov, VY .
PHYSICAL REVIEW LETTERS, 2005, 94 (06)
[4]   THEORY AND 3-DIMENSIONAL SIMULATION OF LIGHT FILAMENTATION IN LASER-PRODUCED PLASMA [J].
BERGER, RL ;
LASINSKI, BF ;
KAISER, TB ;
WILLIAMS, EA ;
LANGDON, AB ;
COHEN, BI .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (07) :2243-2258
[5]   Initial performance results of the OMEGA laser system [J].
Boehly, TR ;
Brown, DL ;
Craxton, RS ;
Keck, RL ;
Knauer, JP ;
Kelly, JH ;
Kessler, TJ ;
Kumpan, SA ;
Loucks, SJ ;
Letzring, SA ;
Marshall, FJ ;
McCrory, RL ;
Morse, SFB ;
Seka, W ;
Soures, JM ;
Verdon, CP .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :495-506
[6]   Using laser entrance hole shields to increase coupling efficiency in indirect drive ignition targets for the National Ignition Facility [J].
Callahan, D. A. ;
Amendt, P. A. ;
Dewald, E. L. ;
Haan, S. W. ;
Hinkel, D. E. ;
Izurni, N. ;
Jones, O. S. ;
Landen, O. L. ;
Lindl, J. D. ;
Pollaine, S. M. ;
Suter, L. J. ;
Tabak, M. ;
Turner, R. E. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[7]   NOVA EXPERIMENTAL FACILITY [J].
CAMPBELL, EM ;
HUNT, JT ;
BLISS, ES ;
SPECK, DR ;
DRAKE, RP .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1986, 57 (08) :2101-2106
[8]   Computational optimization of indirect-driven targets for ignition on the Iskra-6 laser facility [J].
Chizhkov, MN ;
Karlykhanov, NG ;
Lykov, VA ;
Shushlebin, AN ;
Sokolov, L ;
Timakova, MS .
LASER AND PARTICLE BEAMS, 2005, 23 (03) :261-265
[9]   First hohlraum drive studies on the National Ignition Facility [J].
Dewald, E. L. ;
Landen, O. L. ;
Suter, L. J. ;
Schein, J. ;
Holder, J. ;
Campbell, K. ;
Glenzer, S. H. ;
McDonald, J. W. ;
Niemann, C. ;
Mackinnon, A. J. ;
Schneider, M. S. ;
Haynam, C. ;
Hinkel, D. ;
Hammel, B. A. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[10]   Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities [J].
Haan, SW ;
Herrmann, MC ;
Dittrich, TR ;
Fetterman, AJ ;
Marinak, MM ;
Munro, DH ;
Pollaine, SM ;
Salmonson, JD ;
Strobel, GL ;
Suter, LJ .
PHYSICS OF PLASMAS, 2005, 12 (05)