Some observations on Babuska and Brezzi theories

被引:137
作者
Xu, JC [1 ]
Zikatanov, L [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Mathematics Subject Classification (1991): 65N30;
D O I
10.1007/s002110100308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some observations are made on abstract error estimates for Galerkin approximations based on Babugka-Brezzi conditions. A basic error estimate due to Babuska is sharpened by means of an identity that \\P\\ = \\I - P\\ for any nontrivial idempotent operator P. Some remarks are also made on the Brezzi's theory for mixed variational problems and their Galerkin approximations.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 8 条
[1]  
[Anonymous], 2020, DENT, DOI DOI 10.2341/19-026-T
[2]   DISCRETIZATION BY FINITE-ELEMENTS OF A MODEL PARAMETER DEPENDENT PROBLEM [J].
ARNOLD, DN .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :405-421
[3]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[4]  
BABUSKA I, 1972, BN748 U MAR COLL PAR
[5]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[7]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[8]  
ZIKATANOV L, 2000, SINGULAR VALUES IDEM